Skip to main content
Log in

Differential Erythropoietin Action upon Cells Induced to Eryptosis by Different Agents

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Eryptosis is a process by which mature erythrocytes can undergo self-destruction sharing several features with apoptosis. Premature programmed erythrocyte death may be induced by different agents. In this study, we compared mechanisms involved in two eryptotic models (oxidative stress and cell calcium overload) so as to distinguish whether they share signaling pathways and could be prevented by erythropoietin (Epo). Phosphatidylserine (PS) translocation and increased calcium content were common signs in erythrocytes exposed to sodium nitrite plus hydrogen peroxide or calcium ionophore A23187 (CaI), while increased ROS and decreased GSH levels were detected in the oxidative model. Protein kinase activation seemed to be an outstanding feature in eryptosis induced by oxidative stress, whereas phosphatase activation was favored in the CaI model. Cell morphology and membrane protein modifications were also differential signs between both models. Epo was able to prevent cell oxidative imbalance, thus blunting PS translocation. However, the hormone favored intracellular calcium influx which could be the reason why it could not completely counteract the induction of eryptosis. Instead, Epo was unable to inhibit PS externalization in the CaI model. The different mechanisms involved in the eryptotic models may explain the differential action of Epo upon erythrocytes induced to eryptosis by different agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PMSF:

Phenylmethylsulfonyl fluoride

SBTI:

Soybean trypsin inhibitor

SDS:

Sodium dodecylsulfate

NAC:

N-Acetyl-cysteine

rhEpo:

Human recombinant erythropoietin

PS:

Phosphatidylserine

DCFH-DA:

2′,7′-Dichlorofluorescin diacetate

PBS:

Phosphate-buffered saline

ROS:

Reactive oxygen species

GSH:

Reduced glutathione

CaI:

Calcium ionophore A23187

Hb:

Hemoglobin

BSA:

Bovine serum albumin

EMA:

Eosin-5-maleimide

P-Tyr:

Phosphotyrosine residue

N-Tyr:

Nitrotyrosine residue

CI:

Calpain inhibitor I

Aqp1:

Aquaporin 1

EpoR:

Erythropoietin receptor

PTP1B:

Phosphotyrosine phosphatase 1B

p-NPP:

p-Nitrophenylphosphate

References

  1. Bosman, G. J., Willekens, F. L., & Were, J. M. (2005). Erythrocyte aging: a more than superficial resemblance to apoptosis? Cellular Physiology and Biochemistry, 16, 1–8.

    Article  PubMed  CAS  Google Scholar 

  2. Daugas, E., Candé, C., & Kroemer, G. (2001). Erythrocytes: Death of a mummy. Cell Death and Differentiation, 8, 1131–1133.

    Article  PubMed  CAS  Google Scholar 

  3. Lang, K. S., Lang, P. A., Bauer, C., Duranton, C., Wiederm, T., Huber, S., et al. (2005). Mechanisms of suicidal erythrocyte death. Cellular Physiology and Biochemistry, 15, 195–202.

    Article  PubMed  CAS  Google Scholar 

  4. Lang, K. S., Myssina, S., Brand, V., Sandu, C., Lang, P. A., Berchtold, S., et al. (2004). Involvement of ceramide in hyperosmotic shock-induced death of erythrocytes. Cell Death and Differentiation, 11, 231–243.

    Article  PubMed  CAS  Google Scholar 

  5. Berg, C. P., Engels, I. H., Rothbart, A., Lauber, K., Renz, A., Schlosser, S. F., et al. (2001). Human mature red blood cells express caspase-3 and caspase-8, but are devoid of mitochondrial regulators of apoptosis. Cell Death and Differentiation, 8, 1197–1206.

    Article  PubMed  CAS  Google Scholar 

  6. Soupene, E., & Kuypers, F. A. (2006). Identification of an erythroid ATP-dependent aminophospholipid transporter. British Journal of Haematology, 133, 436–438.

    Article  PubMed  CAS  Google Scholar 

  7. Pietraforte, D., Matarrese, P., Straface, E., Gambardella, L., Metere, A., Scorza, G., et al. (2007). Two different pathways are involved in peroxynitrite-induced senescence and apoptosis of human erythrocytes. Free Radical Biology & Medicine, 42, 202–214.

    Article  CAS  Google Scholar 

  8. Schwartz, A. B., Kahn, S. B., Kelch, B., Kim, K. E., & Pequignot, E. (1992). Red blood cell improved survival due to recombinant human erythropoietin explained effectiveness of less frequent, low dose subcutaneous therapy. Clinical Nephrology, 38, 283–289.

    PubMed  CAS  Google Scholar 

  9. Polenakovic, M., & Sikole, A. (1996). Is erythropoietin a survival factor for red blood cells? Journal of American Society of Nephrology, 7, 1178–1182.

    CAS  Google Scholar 

  10. Chattopadhyay, A., Das Choudhury, T., Bandyopadhyay, D., & Datta, A. (2000). Protective effect of erythropoietin on the oxidative damage of erythrocyte membrane by hydroxyl radical. Biochemical Pharmacology, 59, 419–425.

    Article  PubMed  CAS  Google Scholar 

  11. Myssina, S., Huber, S. M., Birka, C., Lang, P. A., Lang, K. S., Friedrich, B., et al. (2003). Inhibition of erythrocyte cation channels by erythropoietin. Journal of American Society of Nephrology, 14, 2750–2757.

    Article  CAS  Google Scholar 

  12. Bratosin, D., Estaquier, J., Petit, F., Arnoult, D., Quatannens, B., Tissier, J.-P., et al. (2001). Programmed cell death in mature erythrocytes: A model for investigating death effector pathways operating in the absence of mitochondria. Cell Death and Differentiation, 8, 1143–1156.

    Article  PubMed  CAS  Google Scholar 

  13. Vittori, D., Nesse, A., & Garbossa, G. (1999). Morphologic and functional alterations of erythroid cells induced by long term ingestion of aluminium. Journal of Inorganic Biochemistry, 76, 113–120.

    Article  PubMed  CAS  Google Scholar 

  14. Ghoti, H., Amer, J., Winder, A., Rachmilewitz, E., & Fibach, E. (2007). Oxidative stress in red blood cells, platelets and polymorphonuclear leukocytes from patients with myelodysplastic syndrome. European Journal of Haematology, 79, 463–467.

    Article  PubMed  Google Scholar 

  15. Callero, M., Pérez, G., Vittori, D., Pregi, N., & Nesse, A. (2007). Modulation of protein tyrosine phosphatase 1B by erythropoietin in UT-7 cell line. Cellular Physiology and Biochemistry, 20, 319–328.

    Article  PubMed  CAS  Google Scholar 

  16. Vittori, D., Garbossa, G., Lafourcade, C., Pérez, G., & Nesse, A. (2002). Human erythroid cells are affected by aluminium. Alteration of membrane band 3 protein. Biochimica Biophysica Acta (Biomembranes), 1558, 142–150.

    Article  CAS  Google Scholar 

  17. Romero, P. J., & Romero, E. (1999). The role of calcium metabolism in human red blood cell ageing: a proposal. Blood Cells, Molecules, & Diseases, 25, 9–19.

    Article  CAS  Google Scholar 

  18. Bevers, E. M., & Williamson, P. L. (2010). Phospholipid scramblase: An update. FEBS Letters, 584, 2724–2730.

    Article  PubMed  CAS  Google Scholar 

  19. Szabó, C., Ischiropoulos, H., & Radi, R. (2007). Peroxynitrite: Biochemistry, pathophysiology and development of therapeutics. Nature Reviews Drug Discovery, 6, 662–680.

    Article  PubMed  Google Scholar 

  20. Burak Çimen, M. Y. (2008). Free radical metabolism in human erythrocytes. Clinica Chimica Acta, 390, 1–11.

    Article  Google Scholar 

  21. Palek, J., Stewart, G., & Lionetti, F. J. (1974). The dependence of shape of human erythrocyte ghosts on calcium, magnesium, and adenosine triphosphate. Blood, 44, 583–597.

    PubMed  CAS  Google Scholar 

  22. Kirkpatrick, F. H., Hillman, D. G., & La Celle, P. L. (1975). A23187 and red cells: Changes in deformability, K+, Mg2+, Ca2+ and ATP. Experientia, 31, 653–654.

    Article  PubMed  CAS  Google Scholar 

  23. Daleke, D. L. (2008). Regulation of phospholipid asymmetry in the erythrocyte membrane. Current Opinion in Hematology, 15, 191–195.

    Article  PubMed  CAS  Google Scholar 

  24. Manno, S., Takakuwa, Y., & Mohandas, N. (2002). Identification of a functional role of lipid asymmetry in biological membranes: Phosphatidylserine–skeletal protein interactions modulate membrane stability. Proceedings of the National Academy of Sciences, 99, 1943–1948.

    Article  CAS  Google Scholar 

  25. Wllekens, F. L. A., Were, J. M., Groenen-Dopp, Y. A. M., Roerdinkholder-Stoelwinder, B., de Pauw, B., & Bosman, G. J. C. (2008). Erythrocyte vesiculation: A self-protective mechanism? British Journal of Haematology, 141, 549–556.

    Article  Google Scholar 

  26. Hagelberg, C., & Allan, D. (1990). Restricted diffusion of integral membrane proteins and polyphosphoinositides leads to their depletion in microvesicles released from human erythrocytes. Biochemical Journal, 271, 831–834.

    PubMed  CAS  Google Scholar 

  27. Richards, R. S., Wang, L., & Jelinek, H. (2007). Erythrocyte oxidative damage in chronic fatigue syndrome. Archives of Medical Research, 38, 94–98.

    Article  PubMed  CAS  Google Scholar 

  28. Quintanar-Escorza, M. A., González-Martínez, M. T., Intriago-Ortega, M. P., & Calderón-Salinas, J. V. (2010). Oxidative damage increases intracellular free calcium [Ca2+] i concentration in human erythrocytes incubated with lead. Toxicology in Vitro, 24, 1338–1346.

    Article  PubMed  CAS  Google Scholar 

  29. Calderón-Salinas, J. V., Muñoz-Reyes, E. G., Guerrero-Romero, J. F., Rodríguez-Morán, M., Bracho-Riquelme, R. L., Carrera-Gracia, M. A., et al. (2011). Eryptosis and oxidative damage in type 2 diabetic mellitus patients with chronic kidney disease. Molecular and Cellular Biochemistry, 357, 171–179.

    Article  PubMed  Google Scholar 

  30. Mallozi, C., Di Stasi, A. M., & Minetti, M. (2001). Nitrotyrosine mimics phosphotyrosine binding to the SH2 domain of the src family tyrosine kinase lyn. FEBS Letters, 503, 189–195.

    Article  Google Scholar 

  31. Chen, K., Piknova, B., Pittman, R. N., Schechter, A. N., & Popel, A. S. (2008). Nitric oxide from nitrite reduction by hemoglobin in the plasma and erythrocytes. Nitric Oxide, 18, 47–60.

    Article  PubMed  Google Scholar 

  32. Frangioni, J. V., Oda, A., Smith, M., Salzman, E. W., & Neel, B. G. (1993). Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets. EMBO Journal, 12, 4843–4846.

    PubMed  CAS  Google Scholar 

  33. Ciana, A., Minetti, G., & Balduini, C. (2004). Phosphotyrosine phosphatases acting on band 3 in human erythrocytes of different age: PTP1B processing during cell ageing. Bioelectrochemistry, 62, 169–173.

    Article  PubMed  CAS  Google Scholar 

  34. Metere, A., Iorio, E., Pietraforte, D., Podo, F., & Minetti, M. (2009). Peroxynitrite signaling in human erythrocytes: synergistic role of hemoglobin oxidation and band 3 tyrosine phosphorylation. Archives of Biochemistry and Biophysics, 484, 173–182.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the University of Buenos Aires (UBA), the National Council of Scientific and Technical Research (CONICET) and the National Agency for Scientific and Technologic Promotion (ANPCYT). Dr. Alcira Nesse and Dr. Daniela Vittori are research scientists at the National Council of Scientific and Technical Research (CONICET), and Lic. Daiana Vota has received a fellowship from CONICET (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela C. Vittori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vota, D.M., Maltaneri, R.E., Wenker, S.D. et al. Differential Erythropoietin Action upon Cells Induced to Eryptosis by Different Agents. Cell Biochem Biophys 65, 145–157 (2013). https://doi.org/10.1007/s12013-012-9408-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-012-9408-4

Keywords

Navigation