Skip to main content
Log in

Influence of Primary Ligands (ODA, TDA) on Physicochemical and Biological Properties of Oxidovanadium (IV) Complexes with Bipy and Phen as Auxiliary Ligands

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The influence of the oxydiacetate (ODA) and thiodiacetate (TDA) ligands on the physicochemical and biological properties of the oxidovanadium(IV) ternary complexes of the VO(L)(B) type, where L denotes ODA or TDA and B denotes 2,2′-bipyridine (bipy) or 1,10-phenanthroline (phen), has been investigated. The stability of the complexes in aqueous solutions, assessed based on the potentiometric titration method, increases in the following direction: VO(TDA)(bipy) < VO(ODA)(bipy) < VO(TDA)(phen) < VO(ODA)(phen). Furthermore, the influence of the TDA and ODA ligands on the antioxidant activity of the oxidovanadium(IV) complexes toward superoxide free radical (O2 •−), 2,2′-azinobis(3-ethylbenzothiazoline-6 sulfonic acid) cation radical (ABTS+•) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) has been examined and discussed. The reactivity of the complexes toward O2 •− increases in the following direction: VO(TDA)(phen) < VO(TDA)(bipy) ≈ VO(ODA)(bipy) < VO(ODA)(phen). The antioxidant activity against ABTS+• and DPPH free radicals is higher for phen complexes, whereas the thiodiacetate complexes are more reactive than are the corresponding oxydiacetate ones. Finally, herein, the cytoprotective activity of the complexes against the oxidative damage generated exogenously by hydrogen peroxide in the hippocampal neuronal HT22 cell line (the MTT and LDH tests) is reported. In a low concentration (1 μM), the cytoprotective action of thiodiacetate complexes is much higher than that of the corresponding oxydiacetate complexes. However, in the higher concentration range (10 and 100 μM), the antioxidant activity of the complexes is overcompensated by their cytotoxic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rehder D (1991) Biologische chemie des vanadiums: biomimetische vanadium-verbindungen als katalysatoren und antidiabetika. Angew Chem, Int Ed Engl 30:148–167

    Article  Google Scholar 

  2. Pessoa JC, Etcheverry S, Gambino D (2015) Vanadium compounds in medicine. Coord Chem Rev 301-302:24–48

    Article  CAS  Google Scholar 

  3. Pessoa JC, Garribba E, Santos MF, Santos-Silva T (2015) Vanadium and proteins: Uptake, transport, structure, activity and function. Coord Chem Rev 301-302:49–86

    Article  Google Scholar 

  4. Kioseoglou E, Petanidis S, Gabriel C, Salifoglou A (2015) The chemistry and biology of vanadium compounds in cancer therapeutics. Coord Chem Rev 301-302:87–105

    Article  CAS  Google Scholar 

  5. Rehder D (2013) The future of/for vanadium. Dalton Trans 42:11749–11761

    Article  CAS  PubMed  Google Scholar 

  6. Pessoa JC, Tomaz I (2010) Transport of therapeutic vanadium and ruthenium complexes by blood plasma components. Curr Med Chem 17:3701–3738

    Article  CAS  PubMed  Google Scholar 

  7. Srivastava AK, Mehdi MZ (2005) Insulino-mimetic and anti-diabetic effects of vanadium compounds. Diabetic Med 22:2–13

    Article  CAS  PubMed  Google Scholar 

  8. Marzban L, McNeill JH (2003) Insulin-like actions of vanadium: potential as a therapeutic agent. J Trace Elem Exp Med 16:253–267

    Article  CAS  Google Scholar 

  9. Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C (2009) Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem 103:554–558

    Article  CAS  PubMed  Google Scholar 

  10. McNeill JH, Yuen VG, Hoveyda HR, Orvig C (1992) Bis(maltolato)oxovanadium(IV) is a potent insulin mimic. J Med Chem 35:1489–1491

    Article  CAS  PubMed  Google Scholar 

  11. Levina A, Lay PA (2011) Metal-based anti-diabetic drugs: advances and challenges. Dalton Trans 40:11675–11686

    Article  CAS  PubMed  Google Scholar 

  12. Thompson KH, Orvig C (2006) Vanadium in diabetes: 100 years from Phase 0 to Phase I. J Inorg Biochem 100:1925–1935

    Article  CAS  PubMed  Google Scholar 

  13. Rivadeneira J, Di Virgilio AL, Barrio DA, Muglia CI, Bruzzone L, Etcheverry SB (2010) Cytotoxicity of a vanadyl(IV) complex with a multidentate oxygen donor in osteoblast cell lines in culture. Med Chem 6:9–23

    Article  CAS  PubMed  Google Scholar 

  14. Rivadeneira J, Barrio DA, Etcheverry SB, Baran EJ (2007) Spectroscopic characterization of a VO2+ complex of oxodiacetic acid and its bioactivity on osteoblast-like cells in culture. Biol Trace Elem Res 118:159–166

    Article  CAS  PubMed  Google Scholar 

  15. León IE, Etcheverry SB, Parajón-Costa BS, Baran EJ (2012) Spectroscopic characterization of an oxovanadium(IV) complex of oxodiacetic acid and o-Phenanthroline. bioactivity on osteoblast-like cells in culture. Biol Trace Elem Res 147:403–407

    Article  PubMed  Google Scholar 

  16. Wyrzykowski D, Inkielewicz-Stępniak I, Czupryniak J, Jacewicz D, Ossowski T, Woźniak M, Chmurzyński L (2013) Electrochemical and biological studies on reactivity of [VO(oda)(H2O)2], [Co(oda)(H2O)2]·H2O, and [Ni(oda)(H2O)3]·1.5H2O towards superoxide free radicals. Z Anorg Allg Chem 639:1795–1799

    Article  CAS  Google Scholar 

  17. Wyrzykowski D, Inkielewicz-Stępniak I, Pranczk J, Żamojć K, Zięba P, Tesmar A, Jacewicz D, Ossowski T, Chmurzyński L (2015) Physicochemical properties of ternary oxovanadium (IV) complexes with oxydiacetate and 1, 10-phenanthroline or 2,2′-bipyridine. cytoprotective activity in hippocampal neuronal HT22 cells. Biometals 28:307–320

    Article  CAS  PubMed  Google Scholar 

  18. Álvarez L, Grirrane A, Moyano R, Álvarez E, Pastor A, Galindo A (2010) Comparison of the coordination capabilities of thiodiacetate and oxydiacetate ligands through the X-ray characterization and DFT studies of [V(O)(tda)(phen)]∙4H2O and [V(O)(oda)(phen)]∙1.5H2O. Polyhedron 29:3028–3035

    Article  Google Scholar 

  19. Pranczk J, Wyrzykowski D, Jacewicz D, Sikorski A, Tesmar A, Chmurzyński L (2015) Structural, physico-chemical and antioxidant characteristics of 2,2′-bipyridyl(iminodiacetato)oxidovanadium(IV)dihydrate. Polyhedron 100:74–81

    Article  CAS  Google Scholar 

  20. Pranczk J, Jacewicz D, Wyrzykowski D, Wojtczak A, Tesmar A, Chmurzyński L (2015) Crystal structure, antioxidant properties and characteristics in aqueous solutions of the oxidovanadium(IV) complex [VO(IDA) phen]·2H2O. Eur J Inorg Chem 2015:3343–3349

    Article  CAS  Google Scholar 

  21. Ramsis H, Perez-Ruiz E, Roger J, Delarbre JL, Maury L (1996) Vibrational study of thiodiglycolic acid and potassium thiodiglycolate salts. J Raman Spectr 27:637–644

    Article  CAS  Google Scholar 

  22. Banik B, Somyajit K, Nagaraju G, Chakravarty AR (2014) Oxovanadium(IV) complexes of curcumin for cellular imaging and mitochondria targeted photocytotoxicity. Dalton Trans 43:13358–13369

    Article  CAS  PubMed  Google Scholar 

  23. Wyrzykowski D, Tesmar A, Jacewicz D, Pranczk J, Chmurzyński L (2014) Zinc(II) complexation by some biologically relevant pH buffers. J Mol Recognit 27:722–726

    Article  CAS  PubMed  Google Scholar 

  24. Brandariz I, Barriada J, Vilarino T, de Vicente MS (2004) Comparison of several calibration procedures for glass electrodes in proton concentration. Monatsh Chem 135:1475–1488

    Article  CAS  Google Scholar 

  25. Chmurzyński L (1996) Studies on correlations of acid-base properties of substituted pyridine N-oxides in solutions. Part 2. correlations of the pKa values in non-aqueous media. Anal Chim Acta 326:267–274

    Article  Google Scholar 

  26. Chmurzyński L, Nesterowicz M, Wawrzyniak G, Kaczmarczyk E, Warnke Z (1996) A potentiometric study on proton-transfer equilibria and cationic conjugation in pyridine N-oxides systems in acetone and methanol. Aust J Chem 49:931–942

    Article  Google Scholar 

  27. Wawrzynów A, Chmurzyński L (1998) A comparison of acid-base properties of substituted pyridines and their N-oxides in propylene carbonate. J Chem Thermodyn 30:713–722

    Article  Google Scholar 

  28. Gans P, Sabatini A, Vacca A (1996) Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43:1739–1753

    Article  CAS  PubMed  Google Scholar 

  29. Sillen LG, Martel AE (1966) Stability constants of metal-ion complexes, the chemical Society. Great Britain, London

    Google Scholar 

  30. Henry RP, Mitchell PCH, Prue JE (1973) Hydrolysis of the oxovanadium(IV) ion and the stability of its complexes with the 1,2-dihydroxybenzenato(2–) ion. J Chem Soc Dalton Trans 1156–1159

  31. Wyrzykowski D, Anusiewicz I, Pilarski B, Jacewicz D, Chmurzyński L (2013) Investigations of coordinating properties of oxydiacetate and thiodiacetate anions towards Zn2+ ions in solutions. Inorg Chim Acta 405:163–168

    Article  CAS  Google Scholar 

  32. Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A (1999) Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord Chem Rev 184:311–318

    Article  CAS  Google Scholar 

  33. Tesmar A, Inkielewicz-Stępniak I, Sikorski A, Wyrzykowski D, Jacewicz D, Zięba P, Pranczk J, Ossowski T, Chmurzyński L (2015) Structure, physicochemical and biological properties of new complex salt of aqua-(nitrilotriacetato-N,O,O′,O″)-oxidovanadium(IV) anion with 1,10-phenanthrolinium cation. J Inorg Biochem 152:53–61

    Article  CAS  PubMed  Google Scholar 

  34. Barszcz B (2005) Coordination properties of didentate N,O heterocyclic alcohols and aldehydes towards Cu(II), Co(II), Zn(II) and Cd(II) ions in the solid state and aqueous solution. Coord Chem Rev 249:2259–2276

    Article  CAS  Google Scholar 

  35. Wyrzykowski D, Pranczk J, Jacewicz D, Tesmar A, Pilarski B, Chmurzyński L (2014) Investigations of ternary complexes of Co(II) and Ni(II) with oxydiacetate anion and 1,10-phenanthroline or 2,2′-bipyridine in solutions. Cent Eur J Chem 12:107–114

    CAS  Google Scholar 

  36. Galloni P, Conte V, Floris B (2015) A journey into electrochemistry of vanadium compounds. Coord Chem Rev 301–302:240–299

    Article  Google Scholar 

  37. León IE, Butenko N, Virgilio ALD, Muglia CI, Baran EJ, Cavaco I, Etcheverry SB (2014) Vanadium and cancer treatment: Antitumoral mechanisms of three oxidovanadium(IV) complexes on a human osteosarcoma cell line. J Inorg Biochem 134:106–117

    Article  PubMed  Google Scholar 

  38. Yodoshi M, Odoko M, Okabe N (2007) Structures and DNA-binding and cleavage properties of ternary copper(II) complexes of glycine with phenanthroline, bipyridine, and bipyridylamine. Chem Pharm Bull 55:853–860

    Article  CAS  PubMed  Google Scholar 

  39. Chakravarty AR (2006) Photocleavage of DNA by copper(II) complexes. J Chem Sci 118:443–453

    Article  CAS  Google Scholar 

  40. Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2:219–236

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jacewicz D, Siedlecka-Kroplewska K, Pranczk J, Wyrzykowski D, Woźniak M, Chmurzyński L (2014) Cis-[Cr (C2O4)(pm)(OH2)2]+ coordination ion as a specific sensing ion for H2O2 detection in HT22 cells. Molecules 19:8533–8543

    Article  PubMed  Google Scholar 

  42. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87

    Article  CAS  PubMed  Google Scholar 

  43. Jacewicz D, Dąbrowska A, Wyrzykowski D, Pranczk J, Woźniak M, Kubasik-Juraniec J, Knap N, Siedlecka K, Neuwelt AJ, Chmurzyński L (2010) Novel biosensor for evaluation of apoptotic or necrotic effects of nitrogen dioxide during acute pancreatitis in rat. Sensors 10:280–291

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Science Centre on the basis of decision number DEC-2012/07/B/ST5/00753.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Wyrzykowski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pranczk, J., Tesmar, A., Wyrzykowski, D. et al. Influence of Primary Ligands (ODA, TDA) on Physicochemical and Biological Properties of Oxidovanadium (IV) Complexes with Bipy and Phen as Auxiliary Ligands. Biol Trace Elem Res 174, 251–258 (2016). https://doi.org/10.1007/s12011-016-0687-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0687-2

Keywords

Navigation