Skip to main content
Log in

Preservation of Strawberries with an Antifungal Edible Coating Using Peony Extracts in Chitosan

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Strawberries represent a valuable source of bioactive compounds including vitamin C, E, β-carotene, and phenolic compounds, but they are fruits with an extremely short postharvest life. Therefore, the current study was conducted to investigate the effectiveness of an active coating consisting in antifungal microparticles obtained by spray drying of peony extracts (Paeonia rockii (PPR)) dispersed in chitosan (Ch) and subsequent addition to polysaccharide gels to slow the fungal attack of small highly perishable fruits, such as strawberries. The results of the antimicrobial assays indicate that the peony extracts in chitosan are able to counteract effectively the growth of different fungal isolates from deteriorated strawberries. In conclusion, through the treatment with this antifungal coating, it is possible to prolong the shelf life of delicate fruits, such as strawberries, to about 16 days, slowing down the weight loss, affecting the safeguard of important vitamins and antioxidant capacity during storage, without causing any significant alteration of the nutritional and sensorial properties of the product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493–496.

    CAS  Google Scholar 

  • Benhamou, N. (1996). Elicitor-induced plant defense pathways. Trends in Plant Science, 1(7), 233–240.

    Article  Google Scholar 

  • Bolling, B., Dolnikowski, G., Blumberg, J., & Chen, C. Y. (2010). Polyphenol content and antioxidant activity of California almonds depend on cultivar and harvest year. Food Chemistry, 122, 819–825.

    Article  CAS  Google Scholar 

  • Cerezo, A. B., Cuevas, E. P., Winterhalter, P., García-Parrilla, M. C., & Troncoso, M. A. (2010). Isolation, identification, and antioxidant activity of anthocyanin compounds in Camarosa strawberry. Food Chemistry, 123, 574–582.

    Article  CAS  Google Scholar 

  • Chatterjee, S., Chatterjee, B. P., & Guha, A. K. (2014). A study on antifungal activity of water-soluble chitosan against Macrophomina phaseolina. International Journal of Biological Macromolecules, 67, 452–457.

    Article  CAS  Google Scholar 

  • Choubey, S., Varughese, L. R., Kumar, V., & Beniwal, V. (2015). Medicinal importance of gallic acid and its ester derivatives: a patent review. Pharmaceutical Patent Analyst, 4(4), 305–315.

    Article  CAS  Google Scholar 

  • CLSI (Clinical and Laboratory Standards Institute). (2012). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard-ninth edition, M07-A9, Vol. 32 No. 2. URL http://clsi.org/.

  • Colla, E., Sobral, P. J. A., & Menegalli, F. C. (2006). Effect of composite edible coating from Amaranthus cruentus flour and stearic acid on refrigerated strawberry (Fragaria ananassa) quality. Latin American Applied Research, 36, 249–254.

    CAS  Google Scholar 

  • Cordenunsi, B. R., Nascimento, J. R. O., & Lajolo, F. M. (2003). Physico-chemical changes related to quality of five strawberry fruit cultivars during cool-storage. Food Chemistry, 83, 167–173.

    Article  CAS  Google Scholar 

  • Corral-Aguayo, R. D., Yahia, E. M., Carrillo-Lopez, A., & Gonzalez.Aguilar, G. (2008). Correlation between some nutritional components and the total antioxidant capacity measured with six different assays in eight horticultural crops. Journal of Agricultural and Food Chemistry, 56, 10498–10504.

    Article  CAS  Google Scholar 

  • Cuero, R. G., Osuji, G., & Washington, A. (1991). N-carboxymethylchitosan inhibition of aflatoxin production: role of zinc. Biotechnology Letters, 13(6), 441–444.

    Article  CAS  Google Scholar 

  • da Silva Pinto, M., Kwon, Y. I., Apostolidis, E., Lajolo, F. M., Genovese, M. I., & Shetty, K. (2008). Functionality of bioactive compounds in Brazilian strawberry (Fragaria × ananassa Duch.) cultivars: evaluation of hyperglycemia and hypertension. Journal of Agricultural and Food Chemistry, 56(12), 4386–4392.

    Article  Google Scholar 

  • Daugaard, H. (2000). Effect of cultural methods on the occurrence of grey mould (Botrytis cinerea Pers.) in strawberries. Biological Agriculture and Horticulture, 18, 77–83.

    Article  Google Scholar 

  • Devlieghere, F., Vermeulen, A., & Debevere, J. (2004). Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiology, 21, 703–714.

    Article  CAS  Google Scholar 

  • Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (2000). Washington. DC: The National Academies Press.

    Google Scholar 

  • Diab, T., Biliaderis, C. G., Gerasopoulos, D., & Sfakiotakis, E. (2001). Physicochemical properties and application of pullulan edible films and coatings in fruits preservation. Journal of the Science of Food and Agriculture, 81, 988–1000.

    Article  CAS  Google Scholar 

  • El-Ghaouth, E. A., Arul, J., Asselin, A., & Benhamou, N. (1992). Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer. Mycological Research, 96, 769–779.

    Article  CAS  Google Scholar 

  • Erkan, N., Tosun, S. Y., Ulusoy, S., & Üretener, G. (2011). The use of thyme and laurel essential oil treatments to extend the shelf life of bluefish (Pomatomus saltatrix) during storage in ice. Journal of Consumer Protection and Food Safety, 6, 39–48.

    CAS  Google Scholar 

  • Esteves, M. T., Carvalho, V. D., De Chitarra, M. I. F., Chitarra, A. B. & Paula, M. B. (1984). Characteristics of fruits of six guava (Psidium guajava L.) cultivars during ripening. II. Vitamin C and tannins contents. In Anais do VII Congresso Brasileiro de Fruticultura. pp.. 490–500, Empresa Catarinense de Pesquisa Agropecuaria, Florianopolis, Brazil.

  • EUCAST data 2013. . URL http://www.eucast.org/

  • Hadwiger, L. A., Kendra, D. F., Fristensky, B. W., & Wagoner, W. (1985). Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. In Chitin in nature and technology (pp. 209–222). New York, NY: Plenumx Press.

    Google Scholar 

  • Hassimotto, N. M. A., Genovese, M. I., & Lajolo, F. M. (2005). Antioxidant activity of dietary fruits, vegetables and commercial frozen fruit pulps. Journal of Agricultural and Food Chemistry, 53, 2928–2935.

    Article  CAS  Google Scholar 

  • Hosseinnejad, M., & Jafari, S. M. (2016). Evaluation of different factors affecting antimicrobial properties of chitosan. International Journal of Biological Macromolecules, 85, 467–475.

    Article  CAS  Google Scholar 

  • ISO 21527-1:2008. Microbiology of food and animal feeding stuffs—horizontal method for the enumeration of yeasts and moulds—part 1: colony count technique in products with water activity greater than 0.95. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=32875.

  • Jung, B., Kim, C., Choi, K., Lee, Y. M., & Kim, J. (1999). Preparation of amphiphilic chitosan and their antimicrobial activities. Journal of Applied Polymer Science, 72, 1713–1719.

    Article  CAS  Google Scholar 

  • Klopotek, Y., Otto, K., & Bohm, V. (2005). Processing strawberries to different products alters contents of vitamin C, total phenolics, Total anthocyanins, and antioxidant capacity. Journal of Agricultural and Food Chemistry, 53, 5640–5646.

    Article  CAS  Google Scholar 

  • Kohl, D. (1992). Fundamentals and recent developments of homogeneous semiconducting sensors. In J. W. Gardner & P. N. Bartlett (Eds.), Sensors and sensory systems for an electronic nose (pp. 53–76). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International Journal of Food Microbiology, 144, 51–63.

    Article  CAS  Google Scholar 

  • Laurienzo, P., Cammarota, G., Di Stasio, M., Gentile, G., Laurino, C., & Volpe, M. G. (2013). Microstructure and olfactory quality of apples de-hydrated by innovative technologies. Journal of Food Engineering, 116, 689–694.

    Article  Google Scholar 

  • Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20, 207–220.

    Article  CAS  Google Scholar 

  • Mali, S., & Grossmann, M. V. E. (2003). Effects of yam starch films on storability and quality of fresh strawberries (Fragaria ananassa). Journal of Agricultural and Food Chemistry, 51, 7005–7011.

    Article  CAS  Google Scholar 

  • McCarrell, E., Gould, S., Fielder, M., Kelly, A., El Sankary, W., & Naughton, D. (2008). Antimicrobial activities of pomegranate rind extracts: enhancement by addition of metal salts and vitamin C. BMC Complementary and Alternative Medicine, 8, 64.

    Article  Google Scholar 

  • Meyers, K. J., Watkins, C. B., Pritts, M. P., & Liu, R. H. (2003). Antioxidant and antiproliferative activities of strawberries. Journal of Agricultural and Food Chemistry, 51, 6887–6892.

    Article  CAS  Google Scholar 

  • Moor, U., Karp, K., Põldma, P., & Pae, A. (2005). Cultural systems affect content of anthocyanins and vitamin C in strawberry fruits. European Journal of Horticultural Science, 70(4), 195–201.

    CAS  Google Scholar 

  • Neville, S. A., Lecordier, A., Ziochos, H., Chater, M. J., Gosbell, I. B., Maley, M. W., & van Hal, S. J. (2011). Utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry following introduction for routine laboratory bacterial identification. Journal of Clinical Microbiology, 49(8), 2980–2984.

    Article  Google Scholar 

  • Ngan, L. T., Moon, J. K., Shibamoto, T., & Ahn, Y. J. (2012). Growth-inhibiting, bactericidal, and urease inhibitory effects of Paeonia lactiflora root constituents and related compounds on antibiotic-susceptible and -resistant strains of Helicobacter pylori. Journal of Agricultural and Food Chemistry, 60(36), 9062–9073.

    Article  CAS  Google Scholar 

  • Nunes, M. C. N., Brecht, J. K., Morais, A. M. M. B., & Sargent, S. A. (1998). Controlling temperature and water loss to maintain ascorbic acid levels in strawberries during postharvest handling. Journal of Food Science, 63(6), 1033–1036.

    Article  CAS  Google Scholar 

  • Pagliarulo, C., De Vito, V., Picariello, G., Colicchio, R., Moccia, S., Pastore, G., Salvatore, P., & Volpe, M. G. (2016). Inhibitory effect of pomegranate (Punica granatum L.) polyphenol extracts on the bacterial growth and survival of clinical isolates of pathogenic Staphylococcus aureus and Escherichia coli. Food Chemistry, 190, 824–831.

    Article  CAS  Google Scholar 

  • Palmeira-de-Oliveira, A., Ribeiro, M. P., Palmeira-de-Oliveira, R., Gaspar, C., Costa-de-Oliveira, S., Correia, I. J., et al. (2010). Anti-Candida activity of a chitosan hydrogel: mechanism of action and cytotoxicity profile. Gynecologic and Obstetric Investigation, 70(4), 322–327.

    Article  CAS  Google Scholar 

  • Peres, N. A., Timmer, L. W., Adaskaveg, J. E., & Correl, J. C. (2005). Lifestyles of Colletotrichum acutatum. Plant Disease, 8, 784–796.

    Article  Google Scholar 

  • Picerno, P., Mencherini, T., Sansone, F., Del Gaudio, P., Granata, I., Porta, A., & Aquino, R. P. (2011). Screening of a polar extract of Paeonia rockii: composition and antioxidant and antifungal activities. Journal of Ethnopharmacology, 138, 705–712.

    Article  CAS  Google Scholar 

  • Proteggente, A. R., Pannala, A. S., Paganga, G., van Buren, L., Wagner, E., Wiseman, S., et al. (2002). The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Research, 36, 217–233.

    Article  CAS  Google Scholar 

  • Regulation (EC) 852/2004 on the hygiene of foodstuffs.

  • Roller, S., & Covill, N. (1999). The antifungal properties of chitosan in laboratory media and apple juice. International Journal of Food Microbiology, 47, 67–77.

    Article  CAS  Google Scholar 

  • Sánchez-González, L., González-Martínez, C., Chiralt, A., & Cháfer, M. (2010). Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. Journal of Food Engineering, 98, 443–452.

    Article  Google Scholar 

  • Sansone, F., Picerno, P., Mencherini, T., Porta, A., Lauro, M. R., Russo, P., & Aquino, R. P. (2014). Technological properties and enhancement of antifungal activity of a Paeonia rockii extract encapsulated in a chitosan-based matrix. Journal of Food Engineering, 120, 260–267.

    Article  CAS  Google Scholar 

  • Shin, Y., Liu, R. H., Nock, J. F., Holliday, D., & Christopher, B. W. (2007). Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biology and Technology, 45, 349–357.

    Article  CAS  Google Scholar 

  • Siah, W. M., Faridah, H., Rahimah, M. Z., Mohd Tahir, S., & Mohd Zain, D. (2011). Effects of packaging materials and storage on total phenolic content and antioxidant activity of Centella asiatica drinks. Journal of Tropical Agriculture and Food Science, 39(1), 1–7.

    Google Scholar 

  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.

    CAS  Google Scholar 

  • Sogawa, K., Watanabe, M., Sato, K., Segawa, S., Ishii, C., Miyabe, A., Murata, S., Saito, T., & Nomura, F. (2011). Use of the MALDI BioTyper system with MALDI-TOF mass spectrometry for rapid identification of microorganisms. Analytical and Bioanalytical Chemistry, 400(7), 1905–1911.

    Article  CAS  Google Scholar 

  • Tapia, C. P., Soto, D. M., Vergara, L. G., Alburquerque, C. O., Maccioni, A. R., Matamata, A. M., et al. (2009). Antifungal effect of high molecular weight chitosan on Candida spp. isolated from clinical samples. Revista Chilena de Infectología, 26(6), 515–519.

    Article  Google Scholar 

  • Terefe, N. S., Kerstin, M., Lloyd, S., & Cornelis, V. (2009). Combined high pressure-mild temperature processing for optimal retention of physical and nutritional quality of strawberries (Fragaria × ananassa). Innovative Food Science & Emerging Technologies, 10(3), 297–307.

    Article  CAS  Google Scholar 

  • Torri, L., Piergiovanni, L., & Caldiroli, E. (2008). Odour investigation of granular polyolefins for flexible food packaging using a sensory panel and an electronic nose. Food Additives and Contaminants, 25(4), 490–502.

    Article  CAS  Google Scholar 

  • Valencia-Chamorro, S. A., Pérez-Gago, M. B., del Río, M. A., & Palou, L. L. (2009). Effect of antifungal hydroxypropyl methylcellulose (HPMC)–lipid edible composite coatings on postharvest decay development and quality attributes of cold-stored ‘Valencia’ oranges. Postharvest Biology and Technology, 54(2), 72–79.

    Article  CAS  Google Scholar 

  • Van der Sluis, A. A., Dekker, M., De Jager, A., & Jongen, W. M. F. (2001). Activity and concentration of polyphenolic antioxidants in apple: effect of cultivar, harvest year, and storage conditions. Journal of Agricultural and Food Chemistry, 49, 3606–3613.

    Article  CAS  Google Scholar 

  • Varaldo, P. E. (2002). Antimicrobial resistance and susceptibility testing: an evergreen topic. The Journal of Antimicrobial Chemotherapy, 50(1), 1–4.

    Article  CAS  Google Scholar 

  • Wang, S. Y., & Lin, H. S. (2000). Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of Agricultural and Food Chemistry, 48(2), 140–146.

    Article  CAS  Google Scholar 

  • Wedge, D. E., Smith, B. J., Quebedeaux, J. P., & Constantin, R. J. (2007). Fungicide management strategies for control of strawberry fruit rot diseases in Louisiana and Mississippi. Crop Protection Journal, 26, 1449–1458.

    Article  CAS  Google Scholar 

  • Wojdylo, A., Figiel, A., & Oszmianski, J. (2009). Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits. Journal of Agricultural and Food Chemistry, 57(4), 1337–1343.

    Article  CAS  Google Scholar 

  • Wszelaki, A. L., & Mitcham, E. J. (2003). Effect of combinations of hot water dips, biological control and controlled atmospheres for control of gray mold on harvested strawberries. Postharvest Biology and Technology, 27, 255–264.

    Article  CAS  Google Scholar 

  • Xing, K., Chen, X. G., Liu, C. S., Cha, D. S., & Park, H. J. (2009). Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets. International Journal of Food Microbiology, 132, 127–133.

    Article  CAS  Google Scholar 

  • Yurdugül, S. (2005). Preservation of quinces by the combination of an edible coating material, semperfresh, ascorbic acid and cold storage. European Food Research and Technology, 220, 579–586.

    Article  Google Scholar 

Download references

Acknowledgments

The investigation was supported by grants “Cluster AGRIFOOD-SOSTENIBILITA’ DELLA FILIERA AGROALIMENTARE (SO.FI.A).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Grazia Volpe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagliarulo, C., Sansone, F., Moccia, S. et al. Preservation of Strawberries with an Antifungal Edible Coating Using Peony Extracts in Chitosan. Food Bioprocess Technol 9, 1951–1960 (2016). https://doi.org/10.1007/s11947-016-1779-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1779-x

Keywords

Navigation