Skip to main content
Log in

Rheological Aspects of Spanish Honeys

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The purpose of this work was to investigate the rheological behavior of Spanish honeys under different conditions (at different temperatures and concentrations). All the samples were characterized to determine their physicochemical (moisture, 0Brix, pH, ash, conductivity, color, total acidity, diastase activity, 5-hydroxymethylfurfural content, sugar content) and thermal (glass transition temperature) profiles. The honeys samples (80.4–82 0Brix) behaved as Newtonian fluid; as expected, their viscosity increased with the solid content and decreased with the temperature. Two experimental viscosity models (Arrhenius and Vogel–Taumman–Fulcher) were checked using the experimental data to correlate the influence of temperature on honey viscosity. A simplified model was proposed to describe the combined effect of the temperatures and concentrations (0Brix) on the viscosity of Spanish honeys. The dynamic viscosity and complex viscosity had the same magnitude at 40 °C, 45 °C, and 50 °C for of all the samples and the Cox Merz rule could be applied at these temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abu-Jdayil, B., Al-Majeed Ghzawi, A., Al-Malah, K. I. M., & Zaitoun, S. J. (2002). Heat effect on rheology of light- and darkcolored honey. Journal of Food Engineering, 51(1), 33–38.

    Article  Google Scholar 

  • Ahmed, J., Ramaswamy, H. S., & Sashidhar, K. C. (2007). Rheological characteristics of tamarind (Tamarindus indica L.) juice concentrates, LWT. Food Science and Technology, 40(2), 225–231.

    CAS  Google Scholar 

  • Ahmed, J., Prabhu, S. T., Raghavan, G. S. V., & Ngadi, M. (2007). Physico-chemical, rheological, calorimetric and dielectric behaviour of selected Indian honey. Journal of Food Engineering, 79, 1207–1213.

    Article  CAS  Google Scholar 

  • Al-Malah, K. I. M., Abu-Jdayil, B., Zaitoun, S., & Ghzawi, A. A. M. (2001). Application of WLF and Arrhenius kinetics to rheology of selected dark-colored honey. Journal of Food Process Engineering, 24, 341–357.

    Article  Google Scholar 

  • Anklam, E. (1998). A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chemistry, 63, 549–562.

    Article  CAS  Google Scholar 

  • Assil, H. I., Sterling, R., & Sporns, P. (1991). Crystal control in processed liquid honey. Journal of Food Science, 56(4), 1034–1037. 1041.

    Article  CAS  Google Scholar 

  • Augusto, P. E. D., Falguera, V., Cristianini, M., & Ibarz, A. (2011). Viscoelastic properties of tomato juice: applicability of the Cox–Merz rule. Food and Bioprocess Technology. doi:10.1007/s11947-011-0655-y.

  • Baroni, M. V., Arrua, C., Nores, M. L., Fayé, P., Díaz, M., Chiabrando, G. A., & Wunderlin, D. A. (2009). Composition of honey from Córdoba (Argentina): assessment of north/south provenance by chemometrics. Food Chemistry, 114, 727–733.

    Article  CAS  Google Scholar 

  • Bhandari, B., D’Arcy, B., & Chow, S. (1999). Rheology of selected Australian honeys. Journal of Food Engineering, 41(1), 65–68.

    Article  Google Scholar 

  • Bistanzy, K. L., & Kokini, J. L. (1983). Comparison of steady shear rheological properties and small amplitude dynamic viscoelastic properties of fluid food materials. Journal of Texture Studies, 14, 113–124.

    Article  Google Scholar 

  • Bogdanov S., (2002) Harmonised methods of the international honey commission. Swiss Bee Research Centre, FAM, Liebefeld, CH-3003 Bern, Switzerland.

  • Chamberlain, E. K., & Rao, M. A. (1999). Rheological properties of acid converted waxy maize starches in water and 90% DMSO/10% water. Carbohydrate Polymers, 40, 251–260.

    Article  CAS  Google Scholar 

  • Chen, Y. W., Lin, C. H., Wu, F. Y., & Chen, H. H. (2009). Rheological properties of crystallized honey prepared by new type of nuclei. Journal of Food Process Engineering, 32, 512–527.

    Article  Google Scholar 

  • Chronakis, I. S., Doublier, J. L., & Piculell, L. (2000). Viscoelastic properties for kappa- and iota-carrageenan in aqueous NaI from the liquid-like to the solid-like behaviour. International Journal of Biological Macromolecules, 28(1), 1–14.

    Article  CAS  Google Scholar 

  • Codex Alimentarius. (1993). Standard for honey, ref. no. CL 1993/14, SH. Rome: Codex Alimentarius Commission FAO/WHO.

    Google Scholar 

  • Codex Standard (Codex Alimentarius) 12–1981, Rev. 2 (2001) Revised codex standard for honey

  • Cohen, I., & Weihs, D. (2010). Rheology and microrheology of natural and reduced-calorie Israeli honeys as a model for high-viscosity Newtonian liquids. Journal of Food Engineering, 100(2), 366–371.

    Article  Google Scholar 

  • Corbella, E., & Cozzolino, D. (2006). Classification of the floral origin of Uruguayan honeys by chemical and physical characteristics combined with chemometics. LWT- Food Science and Technology, 39, 534–539.

    Article  CAS  Google Scholar 

  • Cox, W. P., & Merz, E. H. (1958). Correlation of dynamic and steady flow viscosities. Journal of Polymer Science, 28, 619–622.

    Article  CAS  Google Scholar 

  • Da Silva, J. A. L., & Rao, M. A. (1992). Viscoelastic properties of food hydrocolloid dispersions. In M. A. Rao & J. F. Steffe (Eds.), Viscoelastic properties of foods. London, UK: Elseiver.

    Google Scholar 

  • Escriche, I., Visquert, M., Juan-Borras, M., & Fito, P. (2009). Influence of simulated industrial thermal treatments on the volatile fractionsof different varieties of honey. Food Chemistry, 112, 329–338.

    Article  CAS  Google Scholar 

  • European Commission Directive relating to honey (2001). 2001/110/CE of 02/12/2001.

  • Fallico, B., Zappalà, M., Arena, E., & Verzera, A. (2004). Effects of heating process on chemical composition and HMF levels in Sicilian monofloral honeys. Food Chemistry, 85(2), 305–313.

    Article  CAS  Google Scholar 

  • Fissore, E. N., Matkovic, L., Wider, E., Rojas, A. M., & Gerschenson, L. N. (2009). Rheological properties of pectin-enriched products isolated from butternut (Cucurbita moschata Duch ex Poiret). LWT- Food Science and Technology, 42(8), 1413–1421.

    Article  CAS  Google Scholar 

  • Giner, J., Ibarz, A., Garza, S., & Xhian-Quan, S. (1996). Rheology of clarified cherry juices. Journal of Food Enginnering, 30, 147–154.

    Article  Google Scholar 

  • Gómez Diaz, D., Navaza, J. M., & Quintans, L. C. (2009). Effect of temperature on the viscosity of honey. International Journal of Food Properties, 12(2), 396–404.

    Article  Google Scholar 

  • Gómez Díaz, D., Navaza, J. M., & Quintans, L. C. (2005). Rheological behaviour of Galician honeys. European Food Research and Technology, 222, 439–442.

    Article  Google Scholar 

  • Guinee, T. P., Auty, M. A. E., & Fenelon, M. A. (2000). The effect of fat content on the rheology, microstructure and heat-induced functional characteristics of Cheddar cheese. International Dairy Journal, 10, 277–288.

    Article  CAS  Google Scholar 

  • Hutchings, J. B. (1999). Food color and appearance (2nd ed.). Gaithersburg, Md: Aspen Publishers.

    Google Scholar 

  • Ibarz, A., Vicente, M., & Graell, J. (1987). Rheological behavior of apple juice and pear juice and their concentrates. Journal of Food Engineering, 6, 257–267. doi:10.1016/0260-8774(87)90013-6.

    Article  Google Scholar 

  • Ibarz, A., Pagán, J., & Miguelsanz, R. (1992). Rheology of clarified fruit juices. II. Blackcurrant juices. Journal of Food Engineering, 15, 63–67. doi:10.1016/0260-8774(92)90040-D.

    Article  Google Scholar 

  • Junzheng, P., & Changying, J. (1998). General rheological model for natural honeys in China. Journal of Food Engineering, 36(2), 165–168.

    Article  Google Scholar 

  • Juszczak, L., & Fortuna, T. (2006). Rheology of selected Polish honeys. Journal of Food Engineering, 73(1), 43–49.

    Article  Google Scholar 

  • Kahyaoglu, T., & Kaya, S. (2003). Effect of heat treatment and fat reduction on the rheological and functional properties of Gaziantep cheeese. International Dairy Journal, 13, 867–875.

    Article  CAS  Google Scholar 

  • Kang, K. M., & Yoo, B. (2008). Dynamic rheological properties of honeys at low temperatures as affected by moisture content and temperature. Food Science and Biotechnology, 17(1), 90–94.

    Google Scholar 

  • Kaya, A., Ko, S., & Gunasekaran, S. (2008). Viscosity and color change during in situ solidification of grape pekmez. Food and Bioprocess Technology, 4(2), 241–246.

    Article  Google Scholar 

  • Kokini, J. L. (1992). Rheological properties of food. In D. R. Heldman & D. B. Lund (Eds.), Handbook of food engineering (pp. 1–38). New York: Marcel Dekker.

    Google Scholar 

  • Kucuk, M., Kolayh, S., Karaoglu, S., Ulusoy, E., Baltaci, C., & Candan, F. (2007). Biological activities and chemical composition of three honeys of different types from Anatolia. Food Chemistry, 100, 526–534.

    Article  Google Scholar 

  • Kumar, J. S., & Mandal, M. (2009). Rheology and thermal properties of marketed Indian honey. Nutrition and Food Science, 39(2), 111–117.

    Article  Google Scholar 

  • Lazaridou, A., Biliaderis, C. G., Bacandritsos, N., & Sabatini, A. G. (2004). Composition, thermal and rheological behaviour of selected Greek honeys. Journal of Food Engineering, 64(1), 9–21.

    Article  Google Scholar 

  • Mărghiţaş, L., Dezmirean, D., Moise, A., Bobis, O., Laslo, L., & Bogdanov, S. (2009). Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chemistry, 112, 863–867.

    Article  Google Scholar 

  • Mazzobre, M. F., Soto, G., Aguilera, J. M., & Buera, P. (2001). Crystallization kinetics of lactose in systems co-lyophilized with trehalose. Analysis by differential scanning calorimetry. Food Research International, 34(10), 903–911.

    Article  CAS  Google Scholar 

  • Mossel, B., Bhandari, B., D’Arcy, B., & Caffin, N. (2000). Use of Arrhenius model to predict rheological behaviour in some Australian honeys. Lebensmittel-Wissenschaft und Technologie, 33, 545–552.

    CAS  Google Scholar 

  • Nanda, V., Sarkar, B. C., Sharma, H. K., & Bawa, A. S. (2003). Physico–chemical properties and estimation of mineral content in honey produced from different plants in Northern India. Journal of Food Compost. Anal, 16, 613–619.

    Article  CAS  Google Scholar 

  • Ollet, A. L., & Parker, R. (1995). The viscosity of supercooled fructose and its glass transition temperature. Journal of Texture Studies, 21, 355–362.

    Article  Google Scholar 

  • Ouchemoukh, S., Louaileche, H., & Schweitzer, P. (2007). Physicochemical characteristics and pollen spectrum of some Algerian honeys. Food Control, 18, 52–58.

    Article  CAS  Google Scholar 

  • Parker, R., & Ring, S. G. (1995). A theoretical analysis of diffusion controlled reactions in frozen solutions. CryoLetters, 16, 197–208.

    CAS  Google Scholar 

  • Patil, U., & Muskan, K. (2009). Essentials of biotechnology. New Delhi, India: International Publishing House.

    Google Scholar 

  • Persano-Oddo, L., Gioia-Piazza, M., & Zellini, G. (1995). Caratteristiche cromatiche dei mieli uniflorali. Apicoltura, 10, 109–120.

    Google Scholar 

  • Rao, M. A., Cooley, H. J., & Vizali, A. A. (1984). Flow properties of concentrated juices at low temperatures. Food Technology, 38, 113–119.

    Google Scholar 

  • Recondo, M. P., Elizalde, B. E., & Buera, M. P. (2006). Modelling temperature dependence of honey viscosity and of related supersaturated model carbohydrate systems. Journal of Food Engineering, 77(1), 126–134.

    Article  CAS  Google Scholar 

  • Saénz-Laín, C., & Gómez-Ferreras, C. (2000). Mieles españolas: características e identificación mediante el análisis del polen. Madrid, Spain: Mundi-Prensa.

    Google Scholar 

  • Salinas, M. V., Zuleta, A., Ronayne, P., & Puppo, M. C. (2011). Wheat flour enriched with calcium and inulin: a study of hydration and rheological properties of dough. Food and Bioprocess Technologies. doi:10.1007/s11947-011-0691-7.

  • Samanalieva, J., & Senge, B. (2009). Analytical and rheological investigations into selected unifloral German honey. European Food Research and Technology, 229, 107–113.

    Article  Google Scholar 

  • Serrano, S., Villarejo, M., Espejo, R., & Jodral, M. (2004). Chemical and physical parameters of Andalusian honey: classification of citrus and eucalyptus honeys by discriminant analysis. Food Chemistry, 87, 619–625.

    Article  CAS  Google Scholar 

  • Sopade, P. A., Halley, P., Bhandari, B., D’Arcy, B., Doebler, C., & Caffin, N. (2002). Application of the Williams–Landel–Ferry model to the viscosity–temperature relationship of Australian honeys. Journal of Food Engineering, 56(1), 67–75.

    Article  Google Scholar 

  • Sopade, P. A., Halley, P. J., D’Arcy, B. R., Bhandari, B., & Caffin, N. (2004). Dynamic and steady-state rheology of Australian honeys at subzero temperatures. Journal of Food Process Engineering, 27(4), 284–309.

    Article  Google Scholar 

  • Soria, A. C., Gonzalez, M., de Lorenzo, C., Martínez-Castro, I., & Sanz, J. (2004). Characterization of artesanal honeys from Madrid (Central Spain) on the basis of their melissopalynological, physicochemical and volatile composition data. Food Chemistry, 85, 121–130.

    Article  CAS  Google Scholar 

  • Steffe, J. (1996). Rheological methods in food process engineering—second edition. USA: Freeman Press.

    Google Scholar 

  • Steffolani, M. E., Ribotta, P. D., Perez, G. T., Puppo, M. C., & León, A. E. (2011). Use of enzymes to minimize dough freezing damage. Food and Bioprocess Technologies. doi:10.1007/s11947-011-0538-2.

  • Talens, P., Martinez-Navarrete, N., Fito, P., & Chiralt, A. (2001). Changes in optical and mechanical properties during osmodehydrofreezing of kiwi fruit. Innovative Food Science and Emerging Technologies, 3, 191–199.

    Article  Google Scholar 

  • Terrab, A., Gonzalez, G. A., Diez, M. J., & Heredia, F. J. (2003a). Mineral content and electrical conductivity of honeysproduced in Northewet Morocco and their contribution to the characterisation of unifloral honeys. Journal of the Science of Food and Agriculture, 83, 637–643.

    Article  CAS  Google Scholar 

  • Terrab, A., Gonzalez, G. A., Diez, M. J., & Heredia, F. J. (2003b). Characterisation of Moroccan unifloral honeys using multivariate analysis. European Food Research and Technology, 218, 88–95.

    Article  CAS  Google Scholar 

  • Tiziani, S., & Vodovotz, Y. (2005). Rheological effects of soy protein addition to tomato juice. Food Hydrocolloids, 19(1), 45–52.

    Article  CAS  Google Scholar 

  • Villegas, B., & Costell, E. (2007). Flow behaviour of inulin–milk beverages. Influence of inulin average chain length and milk fat content. International Dairy Journal, 17, 776–781.

    Article  CAS  Google Scholar 

  • White, J. W. (1975). Physical characteristics of honey. In E. Crane (Ed.), Honey: a comprehensive survey (pp. 207–239). London: Morrison and Gibs.

    Google Scholar 

  • White, J. W., Jr. (1978). Honey. Advances in Food Research, 24, 287–274.

    Article  CAS  Google Scholar 

  • Witczak, M., Juszcak, L., & Galkowska, D. (2011). Non-Newtonian behaviour of heather honey. Journal of Food Engineering, 104(1), 532–537.

    Article  Google Scholar 

  • Yanniotis, S., Skaltsi, S., & Karaburnioti, S. (2006). Effect of moisture content on the viscosity of honey at different temperatures. Journal of Food Engineering, 72(4), 372–377.

    Article  Google Scholar 

  • Yaşar, K., Kahyaoglu, T., & Şahan, N. (2009). Dynamic rheological characterization of salep glucomannan/galactomannanbased milk beverages. Food Hydrocolloids, 23(5), 1305–1311.

    Article  Google Scholar 

  • Yoo, B. (2004). Effect of temperature on dynamic rheology of Korean honeys. Journal of Food Engineering, 65, 459–463.

    Google Scholar 

  • Zaitoun, S., Ghzawi, A., Al-Malah, K. I. M., & Abu-Jdayil, B. (2001). Rheological properties of selected light colored Jordanian honey. International Journal of Food Properties, 4, 139–148.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by the project "Knowledge provocation and development through doctoral research PRO-DOCT contract no. POSDRU/88/1.5/S/52946 ", project co-funded by the European Social Fund through Sectoral Operational Program Human Resources 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Oroian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oroian, M., Amariei, S., Escriche, I. et al. Rheological Aspects of Spanish Honeys. Food Bioprocess Technol 6, 228–241 (2013). https://doi.org/10.1007/s11947-011-0730-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0730-4

Keywords

Navigation