Skip to main content
Log in

Immobilization of Microbial Cells in Food Fermentation Processes

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The purpose of this review is to emphasize existing trends and recent advances in the application of immobilized cell technology so as to implement some innovations in food industry associated with processing, preservation, and storage of the products based on the food safety issues. Attention is focused on the engineering aspects of the immobilized cell techniques with emphasis on the mass-balance-based mathematical modeling of the system. Some aspects of models for safety, quality, and competitiveness of the food processing sector are also presented. Ultimately, development of products with novel properties within the alcoholic beverages, meat processing/preservation, manufacture of cheese and bread, sweeteners and pigments, as well as nutraceuticals is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

a :

Specific area of the gel particles (m−1)

A :

Area of the particles (m2)

Bi :

Biot number Bi = (K L × L)/D

C :

Molar concentration (kmol m−3)

D :

Diffusivity (m2 s−1)

G :

Mass concentration of immobilized biocatalyst (kg m−3)

G p :

Dimensionless inhibition parameter, G p = gh 2/D s

k :

Rate constant of reaction (kmol−2 m6 s−1)

K L :

Mass-transfer coefficient (m s−1)

K P :

Inhibition constant (kmol m3)

K S :

Constant in Monod equation (kmol m3)

l :

Size of gel particle (m)

L :

Dimensionless number, L = l × a

R d :

Ratio of product to substrate diffusivities, R d = D p/D s

t :

Time (s)

T :

Dimensionless time, T = D s t/l 2

V :

Volume of broth (m3)

x :

Spatial coordinate (m)

X :

Biomass concentration (kg m−3) in stationery phase

β :

Productivity constant (h−1)

γ :

Inhibition constant (h−1)

η :

Degree of substrate to product conversion, η = C p(C s + C p)

μ :

Specific growth rate of bacteria (s−1)

Ф2 :

Thiele modulus, Ф2= kl 2[C p 0+ C s 0]2/D s

P :

Related to the product

S :

Related to the substrate to related to a quantity for the bulk liquid phase

max:

Denotes the maximum specific growth rate

0:

Denotes an initial value

References

  • Acevedo, C. A., Skurtys, O., Young, M. E., Javier Enrione, J., Pedreschi, F., & Osorio, F. (2009). A non-destructive digital imaging method to predict immobilized yeast-biomass. LWT Food Science and Technology, 42, 1444–1449.

    CAS  Google Scholar 

  • Almonacid, S.F, Nájera, A.L., Young, M.E., Simpson, R.J, Acevedo, C.A. (2010) A comparative study of stout beer batch fermentation using free and microencapsulated yeasts. Food and Bioprocess Technology. doi:10.1007/s11947-010-0379-4.

  • Anilkumar, A. V., Lacik, I., & Wang, T. G. (2001). A novel reactor for making uniform capsules. Biotechnology and Bioengineering, 75, 581–589. doi:10.1002/bit.10077.

    CAS  Google Scholar 

  • Argiriou, T., Kanellaki, M., Voliotis, S., Koutinas, A.A. (1996) Kissiris-supported yeast cells: high biocatalytic stability andproductivity improvement by successive preservations at 0°C. Journal of Agricultural and Food Chemistry, 44, 4028–4031.

    Google Scholar 

  • Atkinson, B., & Mavituna, F. (1983). Biochemical engineering and biotechnology handbook. New York: Nature.

    Google Scholar 

  • Axetrod, D. (1981). Cell-substrate contacts illuminated by total internal reflection fluorescence. The Journal of Cell Biology, 89, 141.

    Google Scholar 

  • Baier, K. E. (1980). In G. Bitton & K. C. Marshall (Eds.), Adsorption of microorganisms to surfaces. New York: Wiley.

    Google Scholar 

  • Bakoyianis, V., Kana, K., Kalliafas, A., & Koutinas, A. A. (1993). Low temperature continuous wine-making by kissiris-supported biocatalyst: volatile by-products. Journal of Agricultural and Food Chemistry, 41, 465–468.

    CAS  Google Scholar 

  • Banga, J. R., Balsa-Canto, E., & Alonso, A. A. (2008). Quality and safety models and optimization as part of computer-integrated manufacturing. Comprehensive Reviews in Food Science and Food Safety, 7, 168–173.

    Google Scholar 

  • Bardi, E., & Koutinas, A. A. (1994). Immobilization of yeast on delignified cellulosic material for room temperature and low-temperature wine making. Journal of Agricultural and Food Chemistry, 42, 221–226.

    CAS  Google Scholar 

  • Bardi, E., Koutinas, A. A., & Kanellaki, M. (1997). Room and low temperature brewing with yeast immobilized on gluten pellets. Process Biochemistry, 32, 691–696.

    CAS  Google Scholar 

  • Bekatorou, A., Koutinas, A. A., Kaliafas, A., & Kanellaki, M. (2001). Freeze-dried Saccharomyces cerevisiae cells immobilized on gluten pellets for glucose fermentation. Process Biochemistry, 36, 549–557.

    CAS  Google Scholar 

  • Belasco, W. J., & Horowitz, R. (Eds.). (2009). Food chains: From farmyard to shopping Cart. Philadelphia: University of Pennsylvania Press.

    Google Scholar 

  • Beschkov, V., & Kosseva, M. (1990). Biotransformation of d-sorbitol to l-sorbose by Gluconobacter suboxydans entrapped in PAAG. Chemical Engineering Journal, 45, B5–B11.

    Google Scholar 

  • Biria, D., Zarrabi, A., & Khosravi, A. (2008). The application of corrugated parallel bundle model to immobilized cells in porous microcapsule membranes. Journal of Membrane Science, 311, 159–164.

    CAS  Google Scholar 

  • Black, G. M., Webb, C., Matthews, T. M., & Atkinson, B. (1984). Practical reactor systems for yeast-cell immobilization using biomass support particles. Biotechnology and Bioengineering, 26, 134–141.

    CAS  Google Scholar 

  • Bornke, F., Hajirezaei, M., & Sonnewald, U. (2002). Potato tubers as bioreactors for palatinose production. Journal of Biotechnology, 96, 119–124.

    CAS  Google Scholar 

  • Briffaud, J., & Engasser, J. M. (1979). Citric acid production from glucose. II Growth and excretion kinetics in a trickle flow fermenter. Biotechnology and Bioengineering, 21, 2093–2111.

    CAS  Google Scholar 

  • Busova, K., Magyar, I., & Janky, F. (1994). Effect of immobilized yeasts on the quality of bottle fermented sparkling wine. Acta Alimantaria, 23, 9–23.

    CAS  Google Scholar 

  • Cachon, R., Molin, P., & Divies, C. (1995). Modeling of continuous pH-stat stirred tank reactor with Lactococcus lactis ssp. lactis bv. diacetylactis immobilized in calcium alginate gel beads. Biotechnology and Bioengineering, 47, 567–574.

    CAS  Google Scholar 

  • Champagne, C. P., Lee, B. H., & Saucier, L. (2010). Immobilization of cells and enzymes for fermented dairy and meat products. In N. J. Zuidam & V. Nedovic (Eds.), Encapsulation technologies for active food ingredients and food processing (pp. 345–366). Heidelberg: Springer.

    Google Scholar 

  • Chan, E.-S., Lee, B.-B., Pogaku, R., & Poncelet, D. (2009). Prediction models for shape and size of Ca-alginate macrobeads produced through extrusion–dripping method. Journal of Colloid and Interface Science, 338, 63–72.

    CAS  Google Scholar 

  • Characklis, W. G., Trulear, M. G., Bryers, J. D., & Zelver, N. (1982). Dynamics of biofilm processes methods. Water Research, 16, 1207–1216.

    Google Scholar 

  • Chau, T. L., Guillan, A., Roca, E., Nunez, M. J., & Lema, J. M. (2000). Enhancement of plasmid stability and enzymatic expression by immobilizing recombinant Saccharomyces cerevisiae. Biotechnology Letters, 22, 1247–1250.

    CAS  Google Scholar 

  • Chibata, I. (1980). Production of useful chemicals using cells immobilized with polyacrylamide and carrageenan. Enzyme Engineering, 5, 393–400.

    CAS  Google Scholar 

  • Chibata, I. (1983). In I. Chibata & L. B. Wingard Jr. (Eds.), Applied Biochemistry and Bioengineering 4—Immobilized Microbial Cells (p. 355). New York: Academic.

    Google Scholar 

  • Crittenden, R. G., & Playne, M. J. (2002). Purification of food-grade oligosaccharides using immobilized cells of Zymomonas mobilis. Applied Microbiology and Biotechnology, 58, 297–302.

    CAS  Google Scholar 

  • D’Souza, S. F. (2001). Review, microbial biosensors. Biosensors & Bioelectronics, 16, 337–353.

    Google Scholar 

  • Davis, J. H., & Goldberg, R. A. (1957). A concept of agribusiness. Boston: Division of Research, Harvard Business School.

    Google Scholar 

  • Dervakos, G., & Webb, C. (1991). On the merits of viable-cell immobilization. Biotechnology Advances, 9, 559–612.

    CAS  Google Scholar 

  • Dimitrellou, D., Kourkoutas, Y., Banat, I. M., Marchant, R., & Koutinas, A. A. (2007). Whey cheese production using freeze-dried kefir culture as a starter. Journal of Applied Microbiology, 103, 1170–1183.

    CAS  Google Scholar 

  • Dimitrellou, D., Kourkoutas, Y., Koutinas, A. A., & Kanellaki, M. (2009). Thermally-dried immobilized kefir on casein as starter culture in dried whey cheese production. Food Microbiology, 26, 809–820.

    CAS  Google Scholar 

  • Divies, C., & Cachon, R. (2005). Wine production by immobilized cell systems. In V. Nedovic & R. Willaert (Eds.), Applications of cell immobilization biotechnology (pp. 285–293). Heidelberg: Springer.

    Google Scholar 

  • Diviès, C., &Deschamps, P. (1986). Procédé et appareillage pour la mise en oeuvre de réactions enzymatiques et application à la préparation de boissons fermentées. French Patent 2601687.

  • Divies, C., Cachon, R., Cavin, J.-F., & Prevost, H. (1994). Immobilized cell technology in wine production. Critical Reviews in Biotechnology, 14(2), 135–153.

    CAS  Google Scholar 

  • Dufrene, Y. F., Boonaert, C. J. P., Gerin, P. A., Asther, M., & Rouxhet, P. G. (1999). Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium. Journal of Bacteriology, 181, 5350–5354.

    CAS  Google Scholar 

  • Fenice, M., Federici, F., Selbmann, L., & Petruccioli, M. (2000). Repeated batch production of pigments by immobilized Monascus purpureus. Journal of Biotechnology, 80, 271–276.

    CAS  Google Scholar 

  • Freeman, A., Blank, T., & Aharonowitz, Y. (1982). Protein determination of cells immobilized in crosslinked synthetic gels. European Journal of Applied Microbial Biotechnology, 14, 13–15.

    CAS  Google Scholar 

  • Fumi, M. D., Bufo, M., Trioli, G., & Colagrande, O. (1989). Bulk sparkling wine production by external encapsulated yeast bioreactor. Biotechnology Letters, 11, 821–824.

    CAS  Google Scholar 

  • Gaboriaud, F., Yves, F., & Dufrene, Y. F. (2007). Atomic force microscopy of microbial cells. Colloids and Surfaces, B: Biointerfaces, 54, 10–19.

    CAS  Google Scholar 

  • Gad, M., & Ikai, A. (1995). Method for immobilizing microbial cells on gel surface for dynamic AFM studies. Biophysical Journal, 69, 2226–2233.

    CAS  Google Scholar 

  • Ghommidh, G., Navarro, J. M., & Durand, G. (1982). Acetic acid production by immobilized Acetobacter cells. Oxygen transfer. Biotechnology and Bioengineering, 24, 605–617.

    CAS  Google Scholar 

  • Gonzalez-Mendez, R., Wemmer, D., Hahn, G., Wade-Jardetzky, N., & Jardetzky, O. (1982). Continuous-flow NMR culture system for mammalian cells. Biochimica et Biophysica Acta, 720, 274.

    CAS  Google Scholar 

  • Groboillot, A., Boadi, D. K., Poncelet, D., & Neufeld, R. J. (1994). Immobilization of cells for application in the food industry. Critical Reviews in Biotechnology, 14(2), 75–107.

    CAS  Google Scholar 

  • Haggstrom, L. (1983). In B. Mattiasson (Ed.), Immobilized cells and organelles, vol. 2. Boca Raton: CRC.

    Google Scholar 

  • Hamilton, S. (2009). ‘Introduction’ to a special issue on food and innovation. Business History Review, 83, 233–238.

    Google Scholar 

  • Heinzen, C., Berger, A., & Marison, I. (2004). Use of vibration technology for jet break-up for encapsulation of cells and liquids in monodisperse microcapsules. In V. Nedovic & R. Willaert (Eds.), Fundamentals of cell immobilization biotechnology, vol. 8A (pp. 257–275). Dordrecht: Kluwer.

    Google Scholar 

  • Herrero, M., Laca, A., Garcia, L. A., & Diaz, M. (2001). Controlled malolactic fermentation in cider using Oenococcus oeni immobilized in alginate beads and comparison with free cell fermentation. Enzyme and Microbial Technology, 28, 35–41.

    CAS  Google Scholar 

  • Hofmann, I., & Sernetz, M. (1983). A kinetic study on the enzymatic hydrolysis of fluoresce in diacetate and fluorescein-di-beta-D-galactopyranoside. Trends in Analytical Chemistry, 2, 172.

    CAS  Google Scholar 

  • Hsu, C. H., Chu, Y. E., Argin-Soyal, S., Hahm, T. S., & Lo, Y. M. (2004). Effects of surface characteristics and xanthan polymers on the immobilization of Xanthomonas Campestris to fibrous matrices. Journal of Food Science, 69(9), E441–E448.

    CAS  Google Scholar 

  • Huang, Y., & Yang, S. T. (1998). Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor. Biotechnology and Bioengineering, 60, 499–507.

    Google Scholar 

  • Iconomopoulou, M., Kanellaki, M., Psarianos, K., & Koutinas, A. A. (2000). Delignified cellulosic material supported biocatalyst as freeze-dried product in alcoholic fermentation. Journal of Agricultural and Food Chemistry, 68, 958–961.

    Google Scholar 

  • Iconomopoulou, M., Kanellaki, M., Soupioni, M., & Koutinas, A. A. (2003). Effect of freeze-dried cells on delignified cellulosic material in low temperature wine making. Applied Biochemistry and Biotechnology, 104, 23–36.

    Google Scholar 

  • Inoue, T. (1995) Development of a two-stage immobilized yeast fermentation system for continuous beer brewing. Proceedings of the 25th European Brewery Convention Congress (pp 25–36).

  • Ivanova, E., Chipeva, V., Ivanova, I., Dousset, X., & Poncelet, D. (2002). Encapsulation of lactic acid bacteria in calcium alginate beads for bacteriocin production. Journal of Culture Collections, 3, 53–58.

    Google Scholar 

  • Jiang, L., Wang, J., Liang, S., Wang, X., Cen, P., & Xu, Z. (2010). Production of butyric acid from glucose and xylose with immobilized cells of Clostridium tyrobutyricum in a fibrous-bed bioreactor. Applied Biochemistry and Biotechnology, 160, 350–359.

    CAS  Google Scholar 

  • Juzlova, P., Martinkova, L., & Kren, V. (1996). Secondary metabolites of the fungus Monascus: A review. Journal of Industrial Microbiology, 16, 163–170.

    CAS  Google Scholar 

  • Karel, S., Libicki, S., & Robertson, C. (1985). The immobilization of whole cells: Engineering principles. Chemical Engineering Science, 40, 1321–1354.

    CAS  Google Scholar 

  • Katechaki, E., Panas, P., Kourkoutas, Y., Koliopoulos, D., & Koutinas, A. A. (2009). Thermally-dried free and immobilized kefir cells as starter culture in hard-type cheese production. Bioresource Technology, 100, 3618–3624.

    CAS  Google Scholar 

  • Kawaguti, H. Y., & Sato, H. H. (2007). Palatinose production by free and Ca-alginate gel immobilized cells of Erwinia sp. Biochemical Engineering Journal, 36, 202–208.

    CAS  Google Scholar 

  • Kennedy, J. F., & Cabral, J. M. S. (1983). Immobilized living cells and their applications. In I. Chibata & L. Wingard (Eds.), Applied Biochemistry and Bioengineering, v.4, Immobilized Microbial Cells (pp. 189–280). New York: Academic.

    Google Scholar 

  • Kilonzo, P. M., Margaritis, A., Bergougnou, M. A., Yu, J. T., & Qin, Y. (2007). Effect of geometrical design on hydrodynamic and mass transfer characteristics of a rectangular-column airlift bioreactor. Biochemical Engineering Journal, 34, 279–288.

    CAS  Google Scholar 

  • Kilonzo, P., Margaritis, A., & Bergougnou, M. (2009). Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells. Journal of Biotechnology, 143, 60–68.

    CAS  Google Scholar 

  • Klein, J., & Kluge, M. (1981). Immobilization of microbial cells in polyurethane foam. Biotechnology Letters, 3(2), 65–70.

    CAS  Google Scholar 

  • Klein, J., & Kressdorf, B. (1982). Immobilization of living whole cells in an epoxy matrix. Biotechnology Letters, 4(6), 375–380.

    CAS  Google Scholar 

  • Klein, J., Washausen, P., Kluge, M., & Eng, H. (1980). Physical characterization of biocatalyst particles obtained from polymer entrapment of whole cells. Enzyme Engineering, 5, 359–362.

    CAS  Google Scholar 

  • Kolot, F. B. (1981). Microbial carriers: Strategy for selection. Process Biochemistry, 16, 30–46.

    CAS  Google Scholar 

  • Kosseva, M. R., & Kennedy, J. F. (2004). Encapsulated lactic acid bacteria for control of malolactic fermentation in wine. Artificial Cells, Blood Substitutes and Biotechnology, 32(1), 55–65.

    CAS  Google Scholar 

  • Kosseva, M. R., Beschkov, V. N., & Pilafova, E. I. (1995). Lactic acid production from lactose by immobilized Lactobacillus casei cells. Bulgarian Chemical Communications, 28(¾), 690–704.

    CAS  Google Scholar 

  • Kosseva, M., Kennedy, J. F., Lloyd, L. L., & Beschkov, V. (1998). Malolactic fermentation in Chardonnay wine by immobilized Lactobacillus casei cells. Process Biochemistry, 33, 793–797.

    CAS  Google Scholar 

  • Kosseva, M. R., Panesar, P. S., Kaur, G., & Kennedy, J. F. (2009). Use of immobilized biocatalysts in the processing of cheese whey. International Journal of Biological Macromolecules, 45, 437–447.

    CAS  Google Scholar 

  • Kourkoutas, Y., Komaitis, M., Koutinas, A.A., Kanellaki, M. (2001) Wine production using yeast immobilized on apple pieces at low and room temperatures. Journal of Agricultural and Food Chemistry, 49, 1417–1425.

    Google Scholar 

  • Kourkoutas, Y., Koutinas, A. A., Kanellaki, M., Banat, I. M., & Marchant, R. (2002a). Continuous wine fermentation using psychrophilic yeast immobilized on apple cuts at different temperatures. Food Microbiology, 19, 127–134.

    CAS  Google Scholar 

  • Kourkoutas, Y., Dimitropoulou, S., Kanellaki, M., Marchant, R., Nigam, P., Banat, I. M., et al. (2002b). High-temperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3 yeast immobilized on delignified cellulosic material. Bioresource Technology, 82, 177–181.

    CAS  Google Scholar 

  • Kourkoutas, Y., Komaitis, M., Koutinas, A.A., Kaliafas, A., Kanellaki, M., Marchant, R., et al. (2003) Wine production using yeast immobilized on quince biocatalyst at temperatures between 30° and 0°C. Food Chemistry, 82(3), 353–360.

    Google Scholar 

  • Kourkoutas, A., Kourkoutas, A., Bekatorou, A., Banat, I. M., Marchant, R., & Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiology, 21, 377–397.

    CAS  Google Scholar 

  • Krastanov, A., Blazheva, D., & Stanchev, V. (2007). Sucrose conversion into palatinose with immobilized Serratia plymuthica cells in a hollow-fibre bioreactor. Process Biochemistry, 42, 1655–1659.

    CAS  Google Scholar 

  • Krouwel, P. G., & Kossen, N. W. F. (1980). Gas production by immobilized microorganisms: Theoretical approach. Biotechnology and Bioengineering, 22(3), 681–687.

    CAS  Google Scholar 

  • Kunkee, R. E. (1991). Some roles of malic acid in the malolactic fermentation in winemaking. FEMS Microbiology Reviews, 88, 55–72.

    CAS  Google Scholar 

  • Laca, A., Quiros, C., Garcıa, L. A., & Dıaz, M. (1998). Modeling and description of internal profiles in immobilized cells systems. Biochemical Engineering Journal, 1, 225–232.

    Google Scholar 

  • Laca, A., Garcıa, L. A., & Dıaz, M. (2000). Analysis and description of the evolution of alginate immobilized cells systems. Journal of Biotechnology, 80, 203–215.

    CAS  Google Scholar 

  • Lemmonier, J. (1992) Cartouche de fibres creuses microporeuses pour la fermentation de boissons sucrées. European Patent 0555603.

  • Linko, P., & Linko, Y.-Y. (1983). Applications of immobilized microbial cells. In I. Chibata & L. Wingard (Eds.), Applied biochemistry and bioengineering, v.4, immobilized microbial cells (pp. 53–151). New York: Academic.

    Google Scholar 

  • Lonvaud-Funel, A. (1995). Microbiology of the malolactic fermentation: Molecular aspects. FEMS Microbiology Letters, 126, 209–214.

    CAS  Google Scholar 

  • Lopez, E., Deive, F., Longo, M. A., & Sanromán, M. A. (2008). Lipolytic enzyme production by immobilized Rhizopus oryzae. Chemical Engineering and Technology, 31(11), 1555–1560.

    CAS  Google Scholar 

  • Loukatos, P., Kiaris, M., Ligas, I., Bourgos, G., Kanellaki, M., Komaitis, M., et al. (2000). Continuous wine-making by γ-alumina-supported biocatalyst. Quality of the wine and distillates. Applied Biochemistry and Biotechnology, 89, 1–13.

    CAS  Google Scholar 

  • Maicas, S. (2001). The use of alternative technologies to develop malolactic fermentation in wine. Applied Microbiology and Biotechnology, 56, 35–39.

    CAS  Google Scholar 

  • Mallouchos, A., Komaitis, M., Koutinas, A., & Kanellaki, M. (2000). Wine fermentations by immobilized and free cells at different temperatures. Effect of immobilization and temperature on volatile by-products. Food Chemistry, 80, 109–113.

    Google Scholar 

  • Mallouchos, A., Reppa, P., Aggelis, G., Koutinas, A. A., Kanellaki, M., & Komaitis, M. (2002). Grape skins as a natural support for yeast immobilization. Biotechnology Letters, 24, 1331–1335.

    CAS  Google Scholar 

  • Manojlovic, V., Djonlagic, J., Obradovic, B., Nedovic, V., & Bugarski, B. (2006). Investigations of cell immobilization in alginate: rheological and electrostatic extrusion studies. Journal of Chemical Technology and Biotechnology, 81, 505–510.

    CAS  Google Scholar 

  • Margaritis, A., & Rowe, G. E. (1983). Ethanol productivity using Zymomonas mobilis immobilized in different carrageenan cells. Development in lndustrial Microbiology, 24, 329–336.

    CAS  Google Scholar 

  • McLoughlin, A., & Champagne, C. P. (1994). Immobilized cells in meat fermentation. Critical Reviews in Biotechnology, 14(2), 179–192.

    CAS  Google Scholar 

  • Melo, J. S., & D’Souza, S. F. (1999). Simultaneous filtration and immobilization of cells from a flowing suspension using a bioreactor containing polyethylenimine coated cotton threads: Application in the continuous inversion of concentrated sucrose syrups. World Journal of Microbiology & Biotechnology, 15(1), 23–27.

    CAS  Google Scholar 

  • Mokyr, J. (2000). Knowledge and household behavior, 1870–1945. Journal of Economic History, 60(1), 1–41.

    CAS  Google Scholar 

  • Monbouquette, H. G., Sayles, G. D., & Ollis, D. F. (1990). Immobilized cell biocatalyst activation and pseudo-steady state behavior: Model and experiment. Biotechnology and Bioengineering, 35, 609–629.

    CAS  Google Scholar 

  • Nakasaki, K., Murai, T., & Akiyama, T. (1989). Dynamic modeling of immobilized cell reactor: Application to ethanol fermentation. Biotechnology and Bioengineering, 33, 1317–1323.

    CAS  Google Scholar 

  • Nedovic, V. A., Durieux, A., Van Nedervelde, L., Rosseels, P., Vandegans, J., Plaisant, A. M., et al. (2000). Continuous cider fermentation with co-immobilized yeast and Leuconostoc oenos cells. Enzyme and Microbial Technology, 26, 834–839.

    CAS  Google Scholar 

  • Neufeld, R. J., & Poncelet, D. (2004). Industrial scale encapsulation of cells using emulsification/dispersion technologies. In V. Nedovic & R. Willaert (Eds.), Fundamentals of cell immobilization biotechnology, Vol. 8A (pp. 311–325). Dordrecht: Kluwer.

    Google Scholar 

  • Nielsen, J. C., & Richelieu, M. (1999). Control of flavor development in wine during and after malolactic fermentation by Oenococcus oeni. Applied and Environmental Microbiology, 65, 740–745.

    CAS  Google Scholar 

  • Norton, T., & Sun, D.-W. (2006). Computational fluid dynamics (CFD)—An effective and efficient design and analysis tool for the food industry: A review. Trends in Food Science and Technology, 17(11), 600–620.

    CAS  Google Scholar 

  • Norton, S., & Vuillemard, J.-C. (1994). Food bioconversions and metabolite production using immobilized cell technology. Critical Reviews in Biotechnology, 14(2), 193–224.

    CAS  Google Scholar 

  • Ogbonna, J. C. (2004). Atomization techniques for immobilization of cells in micro gel beads. In V. Nedovic & R. Willaert (Eds.), Fundamentals of cell immobilization biotechnology, vol. 8A (pp. 327–341). Dordrecht: Kluwer.

    Google Scholar 

  • Ogbonna, J. M., Amano, Y., Nakamura, K., Yokotsuka, K., Shimaza, Y., Wtanabe, M., et al. (1989). A multistage bioreactor with replaceable bioplates for continuous wine fermentation. American Journal of Enology and Viticulture, 40, 292–298.

    CAS  Google Scholar 

  • Ogunbanwo, S. T., & Okanlawon, B. M. (2006). Microbial and sensory changes during the cold storage of chicken meat treated with bacteriocin from L. brevis OG1. Pakistan Journal of Nutrition, 5, 601–605.

    Google Scholar 

  • Pandey, U., & Pandey, J. (2008). Enhanced production of high-quality biomass, δ-aminolevulinic acid, bilipigments, and antioxidant capacity of a food alga Nostochopsis lobatus. Applied Biochemistry and Biotechnology, 150, 221–231.

    CAS  Google Scholar 

  • Park, J. K., & Chang, H. N. (2000). Microencapsulation of microbial cells. Biotechnology Advances, 18, 303–319.

    CAS  Google Scholar 

  • Pedreschi, F., Mery, D., Mendoza, F., & Aguilera, J. (2004). Classification of potato chips using pattern recognition. Journal of Food Science, 69, 264–270.

    Google Scholar 

  • Petrov, K. K., Yankov, D. S., & Beschkov, V. N. (2006). Lactic acid fermentation by cells of Lactobacillus rhamnosus immobilized in polyacrylamide gel. World Journal of Microbiology & Biotechnology, 22, 337–345.

    CAS  Google Scholar 

  • Plessas, S., Pherson, L., Bekatorou, A., Nigam, P., & Koutinas, A. A. (2005). Bread making using kefir grains as baker’s yeast. Food Chemistry, 93, 585–589.

    CAS  Google Scholar 

  • Plessas, S., Bekatorou, A., Kanellaki, M., Athanasios, A., Koutinas, A. A., Marchant, R., et al. (2007). Use of immobilized cell biocatalysts in baking. Process Biochemistry, 42, 1244–1249.

    CAS  Google Scholar 

  • Prusse, U., & Vorlop, K.-D. (2004). The JetCutter technology. In V. Nedovic & R. Willaert (Eds.), Fundamentals of cell immobilization biotechnology, vol. 8A (pp. 295–309). Dordrecht: Kluwer.

    Google Scholar 

  • Prusse, U., Bilancetti, L., Bučko, M., Bugarski, B., Bukowski, J., Gemeiner, P., et al. (2008). Comparison of different technologies for alginate beads production. Chemical Papers, 62(4), 364–374.

    Google Scholar 

  • Quetsch, K-H. (1990). Immobilized biocatalyst bottle stopper - for sparkling wine with string to retract the filter housing inside the stopper. German Patent 3931906.

  • Reddy, L.V., Reddy, L.P., Wee, Y.-J., Reddy, O.V.S. (2010). Production and characterization of wine with sugarcane piece immobilized yeast biocatalyst. Food and Bioprocess Technology. doi:10.1007/s11947-009-0321-9.

  • Robertson, C. R., & Kim, I. H. (1985). Dual aerobic hollow-fiber bioreactor for cultivation of Streptomyces aureofaciens. Biotechnology and Bioengineering, 27, 1012–1020.

    CAS  Google Scholar 

  • Rodrigues, K. L., Gaudino Caputo, L. R., Tavares Carvalho, J. C., Evangelista, J., & Schneedorf, J. M. (2005). Antimicrobial and healing activity of kefir and kefiran extract. International Journal of Antimicrobial Agents, 25, 404–408.

    CAS  Google Scholar 

  • Sarath Babu, V. R., Patra, S., Karanth, N. G., Kumar, M. A., & Thakur, M. S. (2007). Development of a biosensor for caffeine. Analytica Chimica Acta, 582, 329–334.

    Google Scholar 

  • Scheinbach, S. (1998). Probiotics: functionality and commercial status. Biotechnology Advances, 16, 581–608.

    CAS  Google Scholar 

  • Schugerl, K. (1982). Characterization and performance of single- and multistage tower reactors with outer loop for cell mass production. Advances in Biochemical Engineering, 22, 93–224.

    Google Scholar 

  • Silva, S., Ramon-Portugal, F., Silva, P., Texeira, M. F., & Strehaiano, P. (2002). Use of encapsulated yeast for the treatment of stuck and sluggish fermentations. Journal International des Sciences de la Vigne et du Vin, 36, 161–168.

    CAS  Google Scholar 

  • Silva, D. P., Brányik, T., Dragone, G., Vicente, A. A., Teixeira, J. A., & Silva, J. B. A. (2008). High gravity batch and continuous processes for beer production: Evaluation of fermentation performance and beer quality. Chemical Papers, 62(1), 34–41.

    CAS  Google Scholar 

  • Smogrovicova, D., Domeney, Z., & Svitel, J. (2001). Modeling of saccharide utilization in primary beer fermentation with yeasts immobilized in calcium alginate. Applied Biochemistry and Biotechnology, 94, 147–158.

    CAS  Google Scholar 

  • Sodini, I., Boquien, C.-Y., Corrieu, G., & Lacroix, C. (1997). Use of an immobilized cell bioreactor for the continuous inoculation of milk in fresh cheese manufacturing. Journal of Industrial Microbiology & Biotechnology, 18, 56–61.

    CAS  Google Scholar 

  • Spiekermann, U. (2009). Twentieth-century product innovations in the German food industry. Business History Review, 83, 291–315.

    Google Scholar 

  • Spooner, J.E. (1973). Method for producing champagne. U.S. Patent 4009285.

  • Stefanova S., Kosseva M., Beschkov V., Tepavicharova I. (1987) L-sorbose production by cells of the strain Gluconobacter suboxydans entrapped in a polyacrylamide gel. Biotechnology Letters, 9(7), 475–477.

    Google Scholar 

  • Takasaki, Y., Kosugi, Y., & Kanbayashi, A. (1969). In D. Perlman (Ed.), Fermentation advances (pp. 561–589). New York: Academic.

    Google Scholar 

  • Theron, M. M., & Lues, J. F. R. (2007). Organic acids and meat preservation: A review. Food Reviews International, 23, 141–158.

    CAS  Google Scholar 

  • Timmermans, P., & Van Haute, A. (1984). Influence of the type of organisms on the biomass hold-up in a fluidized-bed reactor. Applied Microbiology and Biotechnology, 19, 36–43.

    CAS  Google Scholar 

  • Trius, A., & Sebranek, J. G. (1996). Carrageenans and their use in meat products. Critical Reviews in Food Science and Nutrition, 36(1–2), 69–85.

    CAS  Google Scholar 

  • Tsen, J.-H., Lin, Y.-P., & King, V. A.-E. (2003). Banana puree fermentation by Lactobacillus acidophilus immobilized in Ca-alginate. The Journal of General and Applied Microbiology, 49, 357–361.

    CAS  Google Scholar 

  • Tsen, J.-H., Lin, Y.-P., & King, V. A.-E. (2004). Fermentation of banana media by using κ-carrageenan immobilized Lactobacillus acidophilus. International Journal of Food Microbiology, 91, 215–220.

    CAS  Google Scholar 

  • Vadillo-Rodriguez, V., Busscher, H. J., Norde, W., de Vries, J., & Van der Mei, H. C. (2004). Relations between macroscopic and microscopic adhesion of Streptococcus mitis strains to surfaces. Microbiology, 150, 1015–1022.

    CAS  Google Scholar 

  • Van Iersel, M., van Dieren, B., Rombouts, F. M., & Abee, T. (1999). Flavor formation and cell physiology during the production of alcohol-free beer with immobilized Saccharomyces cerevisiae. Enzyme and Microbial Technology, 24, 407–411.

    Google Scholar 

  • Van Iersel, M., Brouwer-Post, E., Ronbouts, F., & Abee, T. (2000). Influence of yeast immobilization on fermentation and aldehyde reduction during the production of alcohol-free beer. Enzyme and Microbial Technology, 26, 602–607.

    Google Scholar 

  • Van Loo, J., Booten K., Smits, G. (1997) Method for separating a poly-dispersed saccharide composition, resulting products and use thereof in food compositions. US Patent 5,660,872.

    Google Scholar 

  • Venkatasubramanian, K., Karkare, S. B., & Vieth, W. R. (1983a). Chemical engineering analysis of IMC systems. In Chibata & L. Wingard (Eds.), Applied Biochemistry and Bioengineering, v.4, Immobilized Microbial Cells (pp. 311–349). New York: Academic.

    Google Scholar 

  • Venkatasubramanian, K., Karkare, S. B., & Vieth, W. R. (1983b). Chemical engineering analysis of immobilized-cell systems. Applied Biochemistry and Bioengineering, 4, 312–349.

    Google Scholar 

  • Verboven, P., Flick, D., Nicolai, B. M., & Alvarez, G. (2006). Modeling transport phenomena in refrigerated food bulks, packages and stacks: Basics and advances. International Journal of Refrigeration, 29(6), 985–997.

    Google Scholar 

  • Vieth, W., & Venkatasubramaniau, K. (1979) Immobilized microbial cells. In: Venkatasubramaniau K. (ed.), American Chemical Society Symposium Series, Vol. 106, Washington.

  • Wang, H., Seki, M., Furusaki, S. (1995) Mathematical model for analysis of mass transfer for immobilized cells in lactic acid fermentation. Biotechnology Progress, 11, 558–564.

    Google Scholar 

  • Willaert, R., & Nedovic, V. (2006). Primary beer fermentation by immobilized yeast—A review on flavor formation and control strategies. Journal of Chemical Technology and Biotechnology, 81, 1353–1367.

    CAS  Google Scholar 

  • Witthuhn, R. C., Schoeman, T., & Britz, T. J. (2005). Characterisation of the microbial population at different stages of Kefir production and Kefir grain mass cultivation. International Dairy Journal, 15, 383–389.

    CAS  Google Scholar 

  • Wolffberg, A., & Sheintuch, M. (1993). Density distribution of growing immobilized cells. Chemical Engineering Science, 48(23), 3937–3944.

    CAS  Google Scholar 

  • Yang, S. T., & Shu, C. H. (1996). Kinetics and stability of GM-CSF production by recombinant yeast cells immobilized in a fibrous-bed bioreactor. Biotechnology Progress, 12, 449–456.

    CAS  Google Scholar 

  • Yang, S.-T., Huang, Y., & Hong, G. (1995). A novel recycle batch immobilized cell bioreactor for propionate production from whey lactose. Biotechnology and Bioengineering, 45, 379–386.

    CAS  Google Scholar 

  • Yokotsuka, K., Yajima, M., & Matsudo, T. (1997). Production of bottle-fermented sparkling wine using yeast immobilized in double-layer gel beads or strands. American Journal of Enology and Viticulture, 48, 471–481.

    CAS  Google Scholar 

  • Zuidam N. J. & Nedovic V. (2010) Encapsulation technologies for active food ingredients and food processing. Springer, Heidelberg.

Download references

Acknowledgement

The author is grateful to the Japan Society for the Promotion of Science for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Raytchinova Kosseva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosseva, M.R. Immobilization of Microbial Cells in Food Fermentation Processes. Food Bioprocess Technol 4, 1089–1118 (2011). https://doi.org/10.1007/s11947-010-0435-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0435-0

Keywords

Navigation