Skip to main content

Advertisement

Log in

Neuroimaging of Attention-Deficit/Hyperactivity Disorder: Current Neuroscience-Informed Perspectives for Clinicians

  • Attention-Deficit Disorder (R Bussing, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

The neuroimaging literature on attention-deficit/hyperactivity disorder (ADHD) is growing rapidly. Here, we provide a critical overview of neuroimaging studies published recently, highlighting perspectives that may be of relevance for clinicians. After a comprehensive search of PubMed, Ovid, Web of Science, and EMBASE, we located 41 pertinent papers published between January 2011 and April 2012, comprising both structural and functional neuroimaging studies. This literature is increasingly contributing to the notion that the pathophysiology of ADHD reflects abnormal interplay among large-scale brain circuits. Moreover, recent studies have begun to reveal the mechanisms of action of pharmacological treatment. Finally, imaging studies with a developmental perspective are revealing the brain correlates of ADHD over the lifespan, complementing clinical observations on the phenotypic continuity and discontinuity of the disorder. However, despite the increasing potential to eventually inform clinical practice, current imaging studies do not have validated applications in day-to-day clinical practice. Although novel analytical techniques are likely to accelerate the pace of translational applications, at the present we advise caution regarding inappropriate commercial misuse of imaging techniques in ADHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Murphy K, Garavan H. Deriving the optimal number of events for an event-related fMRI study based on the spatial extent of activation. Neuroimage. 2005;27:771–7.

    Article  PubMed  Google Scholar 

  2. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

    Article  PubMed  Google Scholar 

  3. Ahrendts J, Rusch N, Wilke M, Philipsen A, Eickhoff SB, Glauche V, et al. Visual cortex abnormalities in adults with ADHD: A structural MRI study. World J Biol Psychiatry. 2011;12:260–70.

    Article  PubMed  Google Scholar 

  4. Almeida-Montes LG, Ricardo-Garcell J, De la Torre LB, Alcantara HP, Garcia RB, Acosta DA, et al. Cerebellar Gray Matter Density in Girls With ADHD Combined Type: A Cross-Sectional Voxel Based Morphometry Study. J Atten Disord. 2011;15:368–81.

    Article  Google Scholar 

  5. Almeida Montes LG, Prado AH, Martinez Garcia RB, De la Torre LB, Avila AD, Duarte MG. Brain Cortical Thickness in ADHD: Age, Sex, and Clinical Correlations. J Atten Disord. 2012, in press.

  6. Amico F, Stauber J, Koutsouleris N, Frodl T. Anterior cingulate cortex gray matter abnormalities in adults with attention deficit hyperactivity disorder: a voxel-based morphometry study. Psychiatry Res. 2011;191:31–5.

    Article  PubMed  Google Scholar 

  7. Bledsoe JC, Semrud-Clikeman M, Pliszka SR. Neuroanatomical and neuropsychological correlates of the cerebellum in children with attention-deficit/hyperactivity disorder–combined type. J Am Acad Child Adolesc Psychiatry. 2011;50:593–601.

    Article  PubMed  Google Scholar 

  8. Chabernaud C, Mennes M, Kelly C, Nooner K, Di MA, Castellanos FX, et al. Dimensional brain-behavior relationships in children with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2012;71:434–42.

    Article  PubMed  Google Scholar 

  9. Christakou A, Murphy CM, Chantiluke K, Cubillo AI, Smith AB, Giampietro V, et al. Disorder-specific functional abnormalities during sustained attention in youth with Attention Deficit Hyperactivity Disorder (ADHD) and with Autism. Mol Psychiatry. 2012, in press.

  10. •• Cortese S, Kelly C, Chabernaud C, Proal E, Di Martino A, Milham MP, et al. Towards systems neuroscience of ADHD: A meta-analysis of 55 fMRI studies. Am J Psychiatry. 2012, in press. A comprehensive meta-analysis of fMRI studies relating each finding (ADHD-related hyper- or hypo-activations) to seven canonical large-scale neural networks derived from resting state functional imaging of 1000 participants.

  11. • Cortese S, Azoulay R, Castellanos FX, Chalard F, Lecendreux M, Chechin D, et al. Brain iron levels in attention-deficit/hyperactivity disorder: a pilot MRI study. World J Biol Psychiatry. 2012;13:223–31. The first MRI study of brain iron levels in ADHD, estimated using T2* relaxometry.

    Article  PubMed  Google Scholar 

  12. da Silva Jr N, Szobot CM, Anselmi CE, Jackowski AP, Chi SM, Hoexter MQ, et al. Attention deficit/hyperactivity disorder: is there a correlation between dopamine transporter density and cerebral blood flow? Clin Nucl Med. 2011;36:656–60.

    Article  PubMed  Google Scholar 

  13. • de Zeeuw P, Zwart F, Schrama R, van Engeland H, Durston S. Prenatal exposure to cigarette smoke or alcohol and cerebellum volume in attention-deficit/hyperactivity disorder and typical development. Transl Psychiatry. 2012;e84. Innovative design based on a cohort of approximately 300 children, found evidence that prenatal exposure to alcohol and nicotine contribute to deleterious effects on cerebellar volume in ADHD.

  14. Dramsdahl M, Westerhausen R, Haavik J, Hugdahl K, Plessen KJ. Adults with attention-deficit/hyperactivity disorder - a diffusion-tensor imaging study of the corpus callosum. Psychiatry Res. 2012;201:168–73.

    Article  PubMed  Google Scholar 

  15. Duerden EG, Tannock R, Dockstader C. Altered cortical morphology in sensorimotor processing regions in adolescents and adults with attention-deficit/hyperactivity disorder. Brain Res. 2012;1445:82–91.

    Article  PubMed  CAS  Google Scholar 

  16. •• Frodl T, Skokauskas N. Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand. 2012;125:114–26. Meta-analysis of structural MRI studies of ADHD including both voxel based morphometry and manual tracing studies.

    Article  PubMed  CAS  Google Scholar 

  17. • Fusar-Poli P, Rubia K, Rossi G, Sartori G, Balottin U. Striatal dopamine transporter alterations in ADHD: pathophysiology or adaptation to psychostimulants? A meta-analysis. Am J Psychiatry. 2012;169:264–72. The first meta-analysis of striatal dopamine transporter in ADHD.

    Article  PubMed  Google Scholar 

  18. Gilliam M, Stockman M, Malek M, Sharp W, Greenstein D, Lalonde F, et al. Developmental Trajectories of the Corpus Callosum in Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry. 2011.

  19. • Helpern JA, Adisetiyo V, Falangola MF, Hu C, Di MA, Williams K, et al. Preliminary evidence of altered gray and white matter microstructural development in the frontal lobe of adolescents with attention-deficit hyperactivity disorder: a diffusional kurtosis imaging study. J Magn Reson Imaging. 2011;33:17–23. The first study using diffusional kurtosis imaging in ADHD.

    Article  PubMed  Google Scholar 

  20. .•• Hoekzema E, Carmona S, Ramos-Quiroga JA, Barba E, Bielsa A, Tremols V, et al. Training-induced neuroanatomical plasticity in ADHD: A tensor-based morphometric study. Hum Brain Mapp. 2011;32:1741–9. The first tensor-based morphometric study assessing the brain correlates of cognitive training in ADHD.

    Article  PubMed  Google Scholar 

  21. Igual L, Soliva JC, Hernandez-Vela A, Escalera S, Jimenez X, Vilarroya O, et al. A fully-automatic caudate nucleus segmentation of brain MRI: application in volumetric analysis of pediatric attention-deficit/hyperactivity disorder. Biomed Eng Online. 2011;10:105.

    Article  PubMed  Google Scholar 

  22. •• Liddle EB, Hollis C, Batty MJ, Groom MJ, Totman JJ, Liotti M, et al. Task-related default mode network modulation and inhibitory control in ADHD: effects of motivation and methylphenidate. J Child Psychol Psychiatry. 2011;52:761–71. Elegant analysis of methylphenidate and motivational manipulation during Go/No-go task in ADHD revealed normalization of default network deactivation under either high motivational condition or following methylphenidate treatment.

    Article  PubMed  Google Scholar 

  23. Mahone EM, Crocetti D, Ranta ME, Gaddis A, Cataldo M, Slifer KJ, et al. A preliminary neuroimaging study of preschool children with ADHD. Clin Neuropsychol. 2011;25:1009–28.

    Article  PubMed  CAS  Google Scholar 

  24. Mahone EM, Ranta ME, Crocetti D, O'Brien J, Kaufmann WE, Denckla MB, et al. Comprehensive examination of frontal regions in boys and girls with attention-deficit/hyperactivity disorder. J Int Neuropsychol Soc. 2011;17:1047–57.

    Article  PubMed  Google Scholar 

  25. • Nagel BJ, Bathula D, Herting M, Schmitt C, Kroenke CD, Fair D, et al. Altered white matter microstructure in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2011;50:283–92. The first DTI study including preadolescent children with ADHD.

    Article  PubMed  Google Scholar 

  26. •• Nakao T, Radua J, Rubia K, Mataix-Cols D. Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am J Psychiatry. 2011;168:1154–63. Meta-analysis of voxel-based morphometry studies including a metaregression analysis to assess the effects of age and medication on gray matter volumes.

    PubMed  Google Scholar 

  27. Peterson DJ, Ryan M, Rimrodt SL, Cutting LE, Denckla MB, Kaufmann WE, et al. Increased regional fractional anisotropy in highly screened attention-deficit hyperactivity disorder (ADHD). J Child Neurol. 2011;26:1296–302.

    Article  PubMed  Google Scholar 

  28. Posner J, Nagel BJ, Maia TV, Mechling A, Oh M, Wang Z, et al. Abnormal amygdalar activation and connectivity in adolescents with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2011;50:828–37.

    Article  PubMed  Google Scholar 

  29. Posner J, Maia TV, Fair D, Peterson BS, Sonuga-Barke EJ, Nagel BJ. The attenuation of dysfunctional emotional processing with stimulant medication: an fMRI study of adolescents with ADHD. Psychiatry Res. 2011;193:151–60.

    Article  PubMed  Google Scholar 

  30. •• Proal E, Reiss PT, Klein RG, Mannuzza S, Gotimer K, Ramos-Olazagasti MA, et al. Brain gray matter deficits at 33-year follow-up in adults with attention-deficit/hyperactivity disorder established in childhood. Arch Gen Psychiatry. 2011;68:1122–34. The first study assessing cortical thickness and voxel-based morphometry in adults with childhood ADHD vs. prospectively enrolled comparisons; findings revealed enduring structural brain deficits even in probands with remitted ADHD.

    Article  PubMed  Google Scholar 

  31. Qiu MG, Ye Z, Li QY, Liu GJ, Xie B, Wang J. Changes of brain structure and function in ADHD children. Brain Topogr. 2011;24:243–52.

    Article  PubMed  Google Scholar 

  32. Schecklmann M, Schenk E, Maisch A, Kreiker S, Jacob C, Warnke A, et al. Altered frontal and temporal brain function during olfactory stimulation in adult attention-deficit/hyperactivity disorder. Neuropsychobiology. 2011;63:66–76.

    Article  PubMed  Google Scholar 

  33. Schecklmann M, Ehlis AC, Plichta MM, Dresler T, Heine M, Boreatti-Hummer A, et al. Working memory and response inhibition as one integral phenotype of adult ADHD? A behavioral and imaging correlational investigation. J Atten Disord. 2012, in press.

  34. Sebastian A, Gerdes B, Feige B, Kloppel S, Lange T, Philipsen A, et al. Neural correlates of interference inhibition, action withholding and action cancelation in adult ADHD. Psychiatry Res. 2012, in press.

  35. Seidman LJ, Biederman J, Liang L, Valera EM, Monuteaux MC, Brown A, et al. Gray matter alterations in adults with attention-deficit/hyperactivity disorder identified by voxel based morphometry. Biol Psychiatry. 2011;69:857–66.

    Article  PubMed  Google Scholar 

  36. •• Shaw P, Gilliam M, Liverpool M, Weddle C, Malek M, Sharp W, et al. Cortical development in typically developing children with symptoms of hyperactivity and impulsivity: support for a dimensional view of attention deficit hyperactivity disorder. Am J Psychiatry. 2011;168:143–51. The first study comparing rates of cortical thickness decrease in individuals with ADHD to non-ADHD comparisons stratified on the basis of how many symptoms of ADHD were met. Provides evidence of dimensional relationship between number of symptoms and cortex thickness, even in the absence of the categorical diagnosis.

    Article  PubMed  Google Scholar 

  37. Sun L, Cao Q, Long X, Sui M, Cao X, Zhu C, et al. Abnormal functional connectivity between the anterior cingulate and the default mode network in drug-naive boys with attention deficit hyperactivity disorder. Psychiatry Res. 2012;201:120–7.

    Article  PubMed  Google Scholar 

  38. Szobot CM, Roman T, Hutz MH, Genro JP, Shih MC, Hoexter MQ, et al. Molecular imaging genetics of methylphenidate response in ADHD and substance use comorbidity. Synapse. 2011;65:154–9.

    Article  PubMed  CAS  Google Scholar 

  39. •• van Ewijk H, Heslenfeld DJ, Zwiers MP, Buitelaar JK, Oosterlaan J. Diffusion tensor imaging in attention deficit/hyperactivity disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2012;36:1093–106. The first meta-analysis of DTI studies in ADHD.

    Article  PubMed  Google Scholar 

  40. •• Volkow ND, Wang GJ, Newcorn JH, Kollins SH, Wigal TL, Telang F, et al. Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway. Mol Psychiatry. 2011;16:1147–54. Secondary analysis of PET data in medication-naïve adults with ADHD, reported evidence supporting the hypothesis that motivational deficits are related to disruption of the striatal dopamine pathway.

    Article  PubMed  CAS  Google Scholar 

  41. •• Volkow ND, Wang GJ, Tomasi D, Kollins SH, Wigal TL, Newcorn JH, et al. Methylphenidate-elicited dopamine increases in ventral striatum are associated with long-term symptom improvement in adults with attention deficit hyperactivity disorder. J Neurosci. 2012;32:841–9. Prospective pre- and post-treatment study of 20 medication-naïve adults with ADHD treated with oral methylphenidate for one year. Findings indicate that dopamine enhancement in ventral striatum was associated with therapeutic response to medication, further confirming the relevance of dopamine reward/motivation circuitry in ADHD.

    Article  PubMed  CAS  Google Scholar 

  42. •• Wilbertz G, van Elst LT, Delgado MR, Maier S, Feige B, Philipsen A, et al. Orbitofrontal reward sensitivity and impulsivity in adult attention deficit hyperactivity disorder. Neuroimage. 2012;60:353–61. A methodological sound, well designed fMRI study assessing reward circuits in ADHD in relation to impulsivity.

    Article  PubMed  Google Scholar 

  43. Wong CG, Stevens MC. The effects of stimulant medication on working memory functional connectivity in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2012;71:458–66.

    Article  PubMed  CAS  Google Scholar 

  44. Mannuzza S, Klein RG, Klein DF, Bessler A, Shrout P. Accuracy of adult recall of childhood attention deficit hyperactivity disorder. Am J Psychiatry. 2002;159:1882–8.

    Article  PubMed  Google Scholar 

  45. Spencer TJ, Faraone SV, Surman CB, Petty C, Clarke A, Batchelder H, et al. Toward defining deficient emotional self-regulation in children with attention-deficit/hyperactivity disorder using the Child Behavior Checklist: a controlled study. Postgrad Med. 2011;123:50–9.

    Article  PubMed  Google Scholar 

  46. Raichle ME. A paradigm shift in functional brain imaging. J Neurosci. 2009;29:12729–34.

    Article  PubMed  CAS  Google Scholar 

  47. Margulies DS, Bottger J, Long X, Lv Y, Kelly C, Schafer A, et al. Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity. MAGMA. 2010;23:289–307.

    Article  PubMed  Google Scholar 

  48. •• Castellanos FX, Proal E. Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. Trends Cogn Sci. 2012;16:17–26. Recasting models of ADHD pathophysiology in terms of large-scale neural networks.

    Article  PubMed  Google Scholar 

  49. •• Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. Functional-anatomic fractionation of the brain's default network. Neuron. 2010;65:550–62. Tour-de-force dissection of the default network combining both task-free and task-based fMRI studies.

    Article  PubMed  CAS  Google Scholar 

  50. Fransson P. How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia. 2006;44:2836–45.

    Article  PubMed  Google Scholar 

  51. • Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 2005;102:9673–8. Seminal description of the anti-phase, anticorrelated relationships among large-scale neural networks in brain.

    Article  PubMed  CAS  Google Scholar 

  52. •• Sonuga-Barke EJ, Castellanos FX. Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev. 2007;31:977–86. Exposition of a mechanistic hypothesis purporting to account for increased behavioral and cognitive variability in ADHD in terms of dysregulated interplay among default and other intrinsic connectivity networks.

    Article  PubMed  Google Scholar 

  53. • Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A, et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry. 2008;63:332–7. Preliminary report of a novel candidate circuit as locus of pathophysiology in ADHD in adults.

    Article  PubMed  Google Scholar 

  54. •• Morris SE, Cuthbert BN. Research Domain Criteria: cognitive systems, neural circuits, and dimensions of behavior. Dialogues Clin Neurosci. 2012;14:29–37. Lays out the paradigm shift being promulgated by the USA National Institute of Mental Health as framework for the next generation of clinical and translational investigations relevant to psychopathology, including ADHD.

    PubMed  Google Scholar 

  55. Adisetiyo V, Jensen JH, Ramani A, Tabesh A, Di MA, Fieremans E, et al. In vivo assessment of age-related brain iron differences by magnetic field correlation imaging. J Magn Reson Imaging. 2012, in press.

  56. •• Kelly C, Biswal BB, Craddock RC, Castellanos FX, Milham MP. Characterizing variation in the functional connectome: promise and pitfalls. Trends Cogn Sci. 2012;16:181–8. Review of advances and technical issues confronting resting state analyses.

    Article  PubMed  Google Scholar 

  57. •• Milham MP. Open neuroscience solutions for the connectome-wide association era. Neuron. 2012;73:214–8. A comprehensive discussion of the advantages, challenges, and promises of open sharing of MRI data.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr Cortese is currently supported by a grant from the European Commission (“Marie Curie” grant for Career Development, Outgoing International Fellowship, POIF-253103). This work was also supported by NIH grants MH083246, MH081218, HD065282, and K23M087770.

Disclosures

S. Cortese has served as a consultant to Shire Pharmaceuticals; has had travel/accommodations/meeting expenses reimbursed from Eli Lilly and Company and Shire Pharmaceuticals; and was a coinvestigator in studies sponsored by GlaxoSmithKline, Eli Lilly and Company, and Genopharm; F.X. Castellanos: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuele Cortese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortese, S., Castellanos, F.X. Neuroimaging of Attention-Deficit/Hyperactivity Disorder: Current Neuroscience-Informed Perspectives for Clinicians. Curr Psychiatry Rep 14, 568–578 (2012). https://doi.org/10.1007/s11920-012-0310-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-012-0310-y

Keywords

Navigation