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Abstract Decades of research are now leading to therapeutics
that target the molecular mechanisms of the cancer-specific
immune response. These therapeutics include tumor antigen
vaccines, dendritic cell activators, adjuvants that activate in-
nate immunity, adoptive cellular therapy, and checkpoint
blockade. The advances in targeted immunotherapy have led
to clinical advances in the treatment of solid tumors such as
melanoma, prostate cancer, lung cancer, and hematologic ma-
lignancies. Preclinical and translational studies suggest that
patients with breast cancer may also benefit from augmenting
effective immune responses. These results have led to early-
phase clinical trials of tumor antigen vaccines, adjuvants, and
combinations of checkpoint inhibitor blockade to boost breast
cancer-specific immunity in patients. This review focuses on
the current and emerging development of cancer immunother-
apy for breast cancer.
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Introduction

Despite significant advances in breast cancer detection,
locoregional therapy, endocrine therapy, chemotherapy, and
now molecular-targeted therapy, breast cancer remains the
second leading cause of death from cancer in women. An

estimated 232,670 new cases of invasive breast cancer will
be diagnosed in the USA in 2014 and approximately 40,000
women will die from breast cancer [1]. In recent years, both
immune evasion and inflammation have been recognized as
hallmarks of cancer progression. In breast cancer, there is a
growing body of scientific evidence that cancers induce local
immune dysregulation via innate immune suppression, tumor-
igenic inflammation, and in situ suppression of the adaptive T
and B cell immune response. While endocrine and cytotoxic
therapies have long been the mainstay of systemic treatment
for breast cancer, recent advances in immunotherapy in mul-
tiple cancer types highlight the potential for immunotherapy,
in particular as a component of multi-modality adjuvant ther-
apy. Even standard breast cancer therapy may function, in
part, by recruitment of immune cells and local immune acti-
vation, including radiation, endocrine therapy, and
chemotherapy.

The most striking evidence of effective immunotherapy in
breast cancer has been the development of monoclonal anti-
bodies directed against the HER2/neu protein. Up to one third
of breast cancers contain amplifications of the ERBB2 gene
encoding the HER2 receptor tyrosine kinase, which has led
to clinical use of the anti-HER2 monoclonal antibodies
(MAbs) trastuzumab and pertuzumab. In addition to targeting
the kinase signaling pathway, trastuzumab also functions via
recruitment of NK cells and activation of antibody-dependent
cytotoxicity (ADCC), whichmay partially account for the syn-
ergistic activity of trastuzumab and docetaxel in breast cancer
[2]. Here, we will focus on the clinical translation of breast
cancer vaccines, adjuvants, and checkpoint inhibitor blockade.

Immune Dysregulation in Breast Cancer: an Overview

Innate vs. Adaptive Immunity The immune system functions
as a highly specific and adaptable system that recognizes
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alterations in proteins, glycoproteins, and cell structure. As a
result, immune surveillance can alter cancer progression,
while nonspecific inflammation can be tumorigenic [3]. The
innate immune response is nonspecific and is comprised of
antigen-presenting cells (APCs) such as dendritic cells and
macrophages, as well as cytokines and chemokines that in-
duce local and systemic inflammatory changes (Fig. 1). In
contrast, the adaptive immune system is highly specific and
has long-lasting memory responses. Adaptive immunity re-
sults in the development of memory B cells which secrete
antibodies, cytotoxic CD8+ T lymphocytes, and T helper
CD4+ T lymphocytes. Activation of the T cell immune re-
sponse occurs when tumor antigens are processed by APCs,
leading to direct tumor cytolysis by CD8+T lymphocytes, and
indirect cytolysis through the production of cytokines by both
CD8+ and CD4+ T lymphocytes, which recruit phagocytic
cells and destroy tumor and stroma.

Antigen Presentation The identification of dendritic cells
(DCs) as the most effective antigen-presenting cell led to the
Nobel Prize in Physiology or Medicine for Ralph Steinman in
2011. Dendritic cells constitute a uniquely efficient subset of
APC that process tumor antigen through a mechanism known
as cross-presentation and then migrate to the draining lymph
nodes, where they initiate T cell differentiation toward the
Th1, Th2, or Th17 phenotypes. Dendritic cells in breast cancer
are both reduced in number and are dysfunctional [4]. Several
factors determine the direction of Tcell polarization and there-
by regulate the T cell response [5]. Indoleamine 2,3
deoxygenase (IDO) accumulates in tumor-infiltrating dendrit-
ic cells and correlates with Tcell impairment in cancer [6], and
in breast cancer specifically [7]. Many clinical trials have used
ex vivo purified DCs to deliver antigen, but the cost and tech-
nical challenges have limited widespread clinical trials. Of
cytokines, interleukin (IL)-12 activates DCs and promotes
the development of Th1 cells, cytotoxic T lymphocytes
(CTL), and natural killer (NK) cells [5]. IL-12 has been shown

to induce a type I immune response likely directed toward
tumor-associated antigens and neo-vascularization [8].

Immunosuppression Tumor cells actively modify the tumor
microenvironment to generate both immune suppression of
effector T lymphocytes and to induce tumorigenic inflamma-
tion. Immune suppression occurs through mediators such as
IDO, prostaglandin E2 (PGE2), transforming growth factor β
(TGFβ), IL-6, and VEGF-A. Interleukin-10 (IL-10) is an anti-
inflammatory cytokine that induces immunosuppression and
functions to block tumor immune surveillance. In breast can-
cer, IL-10 induces both tumor proliferation and inhibits im-
mune responses [9].

As a result, the tumor environment often contains high
levels of regulatory T cells and myeloid-derived suppressor
cells (MDSCs). MDSCs are a population of immature mye-
loid cells that function to suppress both innate and adaptive
immune responses [10]. Therapeutics that target MDSCs in-
clude STAT3 inhibitors, tyrosine kinase inhibitors, and amino-
bisphosphonates, which prevent MDSC expansion, while cy-
totoxic agents may directly decrease MDSC accumulation
[10] [11].

T Cell Inhibition Immune regulation of the T cell response is
necessary to minimize tissue destruction and autoimmunity
after antigen stimulation, but these inhibitory molecules can
be overexpressed in cancer tissues to cause local T cell inhi-
bition.When Tcells are activated by APCs, the co-stimulatory
molecule CD28 on the naïve T cell surface binds to B7 pro-
teins on the APC. This second signal induces T cells activa-
tion, proliferation, effector function, and migration. Addition-
al co-stimulatory molecules include OX40, which promote
clonal expansion, cytokine production, and T cell survival
once bound to OX40L [12]. The inducible co-stimulatory
(ICOS) and CD40 pathways promote TH2 responses (T cell-
dependent Ab immunity), whereas the OX40/4-1BB path-
ways promote the activation of CD4+ and CD8+ T cells.

Fig. 1 Schematic of potential
immunotherapy targets in breast
cancer. Molecular pathways are
altered in multiple cellular types
at the tumor site. Antigen-
presenting cells (APC, left), T
cells (center), and tumor cells
(right) all express potential
targetable molecules such as
tumor antigens for vaccines,
adjuvants for activating APCs,
and blockade of inhibitory
molecules that function to impede
anti-tumor immunity
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There are several inhibitory pathways that serve to limit T
cell activation and function. CTLA-4 is a CD28 homologue
that binds to B7 on APC with a higher affinity and is induced
by TCR signaling to out-compete the CD28 function. In ef-
fect, CTLA-4 expression inhibits T cell activation and anti-
tumor efficacy. PD-1 is a CD28 and CTLA-4 homologue that
is normally induced on activated T cells, but the chronic anti-
genic exposure in cancer may lead to high levels of PD-1 and
T cell exhaustion [13••]. Upregulation of PD-1 has been
shown to inhibit innate and adaptive immunity [14]. The li-
gand of PD-1, PD-L1, is upregulated in tumor cells and is
correlated with progression and poor prognosis of cancer [14].

The mammalian target of rapamycin (mTOR) belongs to
the phosphatidylinositol 3-kinase-related kinase protein fami-
ly and is commonly dysregulated in breast cancer [15]. Hy-
peractivation of this pathway has been linked to resistance of
endocrine and anti-HER2 therapies [16]. mTOR inhibition
potentiates vaccine-induced generation of memory T cells
while increasing susceptibility to cytotoxic effector cells
in vitro [17, 18]. Everolimus is an inhibitor of mTOR that is
currently used in combination with exemestane for advanced
metastatic hormone receptor-positive (HR+) breast cancer
[19], and mTOR inhibition is being evaluated as an adjuvant
for cancer vaccine development.

The Tumor Microenvironment in Breast Cancer Tumor ex-
pression profiling of breast cancer has demonstrated patterns
of immunoregulatory gene activation [20]. The immunomod-
ulatory subtype of triple-negative breast cancer (TNBC) has
prominent lymphocytic features, which it shares with medul-
lary breast cancers [21••]. TNBC subsets with B cell signa-
tures on tumor expression profiling have improved clinical
outcomes [22]. Approximately 50% of Her2/neu+ breast can-
cers have inflammatory signatures, which also correlate with
improved clinical outcome [23]. Breast cancers with higher
numbers of tumor-infiltrating lymphocytes have improved re-
sponses to neoadjuvant chemotherapy [24]. These observa-
tions suggest that subsets of breast cancers have intrinsic prop-
erties that may respond better to targeted immunotherapy [25].

Clinical Trials of Immunotherapy in Breast Cancer

Breast Cancer Vaccines Vaccines for infectious disease are
designed for disease prevention and usually target B lympho-
cyte immunity, but cancer vaccines have primarily been de-
veloped to stimulate T lymphocyte immunity, for the treat-
ment of preexisting disease. Cancer vaccines target tumor an-
tigens that are altered in tumors, either by mutation, splice
variation, or overexpression. The development of next-
generation sequencing of cancers has led to the prediction of
a large number of unique tumor antigen targets, which carries

the (as yet unrealized) potential for personalized vaccine ther-
apy targeting the proteomic alterations within an individual
patient’s cancer. Most early cancer vaccines were designed
to activate CD8+ T cell responses using short peptides that
bindMHC class I molecules [26]. These Tcell responses were
often short-lived and ineffective, which led to antigen delivery
methods that target both CD8+ effector T lymphocytes and
CD4+ helper T lymphocytes [13••]. Antigens can be delivered
as peptides, proteins, naked DNA, with viral vectors, or load-
ed into antigen-presenting cells such as dendritic cells (Ta-
bles 1 and 2). Antigen delivery is generally combined with
adjuvants that enhance antigen presentation and activation of
innate immunity, such as granulocyte-macrophage colony-
stimulating factor (GM-CSF) or Montanide ISA-51.

HER2 Peptide Vaccines The most well-studied antigens in
breast cancer are the Her2/neu (HER2) and mucin-1
(MUC1) antigens. HER2 is overexpressed in 25–30 % of
breast cancers, while MUC1 is expressed in the vast majority
of breast cancers with altered glycosylation. Subsets of pa-
tients with breast cancer naturally have low levels of antibod-
ies as well as Tcell immunity specific for HER2 or for MUC1.
The vaccines have been designed to amplify the preexisting
immunity to a therapeutically beneficial level. The vaccines
that are furthest along in clinical development are the Her2/
neu vaccines that target the E75 peptide (NeuVax™,
nelipepimut-S) and the GP2 peptide, both of which are limited
to HLA-A2+ patients (40–50 % of the US population) [27••,
28]. An initial nonrandomized phase I/II trial of the E75 pep-
tide with the adjuvant GM-CSF enrolled 195 early-stage
HER2-positive patients and demonstrated improved 5-year
disease-free survival (DFS) (89.7 %) when compared to
GM-CSF-treated HLA-A2-negative controls (80.2 %) in the
adjuvant setting [29••]. These results led to an ongoing phase
III study evaluating E75 with GM-CSF in the prevention of
recurrence for patients with node-positive HER2-positive
breast cancer (NCT01479244). A phase II study evaluating
the combination of E75 with trastuzumab is also ongoing
(NCT01570036).

The HER2-derived GP2 peptide is a subdominant T cell
epitope that, like E75, is naturally immunogenic in a subset of
patients with HER2-positive breast cancers. A phase II trial of
vaccination of GP2 with GM-CSF for breast cancer patients in
the adjuvant setting is ongoing. Early results with a median
follow-up of 17.9 months suggest improvement in recurrence
rates [27••].

Because of the short duration of immunity to MHC class I-
targeted peptides, multi-epitope vaccines have been designed
to elicit both CTL and CD4+ TH cell responses. AE37 is a
HER2-derived class II epitope that targets CD4+ T lympho-
cytes. A phase II trial that combines the AE37 peptide with the
GP2 peptide and GM-CSF for the adjuvant treatment of early-
stage breast cancer is currently underway, with interim
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evidence of induction of T cell immunity [30, 31]. Clinical
trials using long overlapping peptides derived from the extra-
cellular and intracellular domains of HER2 are also ongoing.

MUC1 Peptide Vaccines MUC1 is an epithelial membrane
antigen whose overexpression has been linked with breast
cancer and other human epithelial cancers and is the target
of the CA27.29 and CA15-3 biomarkers. The presence of
abnormally glycosylated MUC1 on cancer cells can trigger a
cytotoxic T cell response and the presence of antibodies in

serum of patients with early breast cancer is associated with
better outcomes [32]. Sialyl-Tn (STn) is a naturally occurring
carbohydrate epitope found on a variety of glycoproteins, in-
cludingMUC1, expressed by many types of tumor cells and is
believed to have functional significance in tumor growth and

that consists of a synthetic antigen that mimics the STn antigen.
The STn antigen is conjugated to the high-molecular-weight
carrier protein keyhole limpet hemocyanin (KLH) and admin-
istered with the adjuvant Detox B (later renamed Enhanzyn).

Table 1 Ongoing clinical trials of immunotherapy in breast cancer

Phase Study Stage NCI identifier

DNA and viral vaccines

I AVX901 HER-2-expressing viral vaccine Metastatic NCT01526473

I Plasma mammaglobin-A DNA Metastatic NCT00807781

I AdHER-2/neu dendritic cell Metastatic NCT01730118

I HER2/neu peptide+measles virus+nor-MDP in ISA 720 Metastatic NCTO1376505

I Human MUC1 in adenovirus Metastatic NCT02140996

I/II CEA/TRICOM vaccine with chemotherapya Metastatic NCT00048893

Peptide and protein vaccine

I Folate receptor binding peptide vaccine Early NCT02019524

I Sialyl Lewis-KLH vaccine and QS21 Metastatic NCT00470574

I Multiple-peptide vaccine Metastatic NCT01259505

I Synthetic peptides+tetanus toxoid+Montanide ISA-51a Metastatic NCT00304096

I GP2+GM-CSF vs AE37+GMCSF vs GMCSF Early NCT00524277

I NY-ESO-1 vaccine±sirolimus Early NCT01522820

I MUC-1 peptide for TNBC Early NCT00986609

I Multi-peptide vaccine with basilixumab (anti-CD25) Metastatic NCT01660529

II Trastuzumab+GM-CSF±HER-2 E75 peptide Early NCT01570036

II Globo H-KLH immunostimulant Metastatic NCT01516307

III NeuVax™ (nelipepimut-S or E75) Early NCT01479244

I/II HER-2 intracellular protein+trastuzumab±polysaccharide-K Metastatic NCT01922921

Cellular vaccines

I Pilot study of a breast cancer vaccine plus poly-ICLC Early NCT01532960

I/II HER-2 peptide vaccine+cyclophosphamide+adoptive HER2-specific T cells Metastatic NCT00791037

I/II Allogeneic whole-cell vaccine Metastatic NCT00722228

II GSK2302024A (WT-1-specific therapy)+standard neoadjuvant Early NCT01220128

II Cyclophosphamide+GM-CSF+allogeneic vaccine±trastuzumab Metastatic NCT00971737

II PANVAC+docetaxel Metastatic NCT00179309

II/III Allo-stim breast cancer vaccine Metastatic NCT01741038

Checkpoint inhibitors

I Lirilumab (anti-KIR)+nivolumab (anti-PD1) Metastatic NCT01714739

I BMS 936558 (anti-PDL1) Metastatic NCT00729664

I MPDL3280A (anti-PDL1) Metastatic NCT01375842

I MEDI4736 (anti-PD1) in TNBC Metastatic NCT01693562

I/II Nivolumab (anti-PD1)±ipilimumab (anti-CTLA4) in TNBC Metastatic NCT01928394

II Preoperative cryotherapy±ipilimumab (anti-CTLA4) Early NCT01502592

TNBC triple-negative breast cancer
a Completed, data not yet published
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Theratope has now been studied in phase I, II, and III clinical
trials [34–36]. In a large phase III trial of 1028 women with
metastatic breast cancer, treatment with Theratope failed to
result in prolonged survival, but subset analysis of patients
receiving concomitant endocrine therapy demonstrated im-
provements in time to progression and overall survival [37••].

Cancer-Testis Antigen Vaccines Cancer-testis (CT) antigens
such as MAGE-A3 and NY-ESO-1 are defined by their selec-
tive expression in germ line cells and absent expression in
normal tissues.Most of the clinical trials targeting CTantigens
have been for melanoma and lung cancer [38]. Vaccination
withNY-ESO-1 has been recently evaluated inmetastatic mel-
anoma in combination with ipilimumab [39, 40] and sirolimus
[39]. Therapeutic tumor vaccines targeting MAGE-A3 are
a l so be ing t e s t ed in c l i n i c a l t r i a l s i n NSCLC
(NCT00480025). In breast cancer, the CT antigens MAGE-
A3 and NY-ESO-1 are preferentially expressed in ER-
negative cancers [41]. When expressed in breast cancer, the
cancer-testes antigens are highly immunogenic [42••], and the
titer of antibodies to NY-ESO-1 has been shown to correlate
with breast cancer progression, and these antigens remain po-
tential targets for breast cancer immunotherapy [43].

Other Breast Cancer Target Antigens A number of other tu-
mor antigens have increased expression in breast cancers, and
early-phase clinical trials have targeted breast cancer as well
as other cancers. Most of these vaccine trials have demonstrat-
ed induction of T cell-specific immunity, but these studies
have been too small or too recent to demonstrate evidence of
clinical impact. Carcinoembryonic antigen (CEA) is a glyco-
sylated membrane-bound protein of 180 kDa expressed in a
high percentage of several human carcinomas, including co-
lorectal, gastric, pancreatic (90 %), non-small cell lung
(70 %), and breast carcinomas (50 %) [44]. A number of
CEA-based cancer vaccines have been tested in early-phase
clinical trials for the treatment of breast and other cancers [45].
Telomerase (hTERT) is a widely expressed tumor antigen,
present in more than 85 % of human cancers and as many as

99 % of breast cancer while absent in normal cells [46]. Clin-
ical trials of dendritic cells pulsed hTERT-derived peptide
vaccines resulted in increased hTERT specific immunity, but
did lead to anti-tumor immunity [47].

Other potential target antigens include the Wilms’ tumor
antigen (WT1), a transcription factor involved in cell prolifer-
ation, differentiation, and apoptosis in breast cancer, leukemia,
and other cancers [48, 49••]. A phase I/II trial of a WT1 pep-
tide with adjuvant Montanide ISA resulted in a partial re-
sponse in one of ten patients, with stable disease in five pa-
tients [50]. NY-BR-1 is a tumor-associated antigen detected in
up to 60 % of primary breast carcinomas and represents a
potential target [43, 51]. Mammaglobin-A (Mam-A) is a se-
cretory protein that is overexpressed in 80 % of primary and
metastatic breast cancers. A phase I clinical trial of a
mammaglobin-A DNA vaccine resulted in stimulation of
IFN-γ producing CD4+ICOShi T cells with tumoricidal func-
tion [52••].

Viral Vectors for Antigen Delivery Due to the HLA limita-
tions of short peptides and the production and cost of recom-
binant proteins and pools of long peptides, a variety of vectors
have been developed to deliver antigens with co-stimulatory
molecules to enhance immunity. These vectors include the
poxvirus family (fowlpox, canarypox, and vaccinia), measles,
and adenoviral vectors. Viral vectors, in general, generate
longer-lasting and broader immunity than either naked DNA
or peptide delivery, but repeat vaccination can induce anti-
bodies to viral antigens that limit immunogenicity. Therefore,
many viral vector vaccine designs use different vectors for
immune priming and boosting. PROSTVAC is a recombinant
vaccinia viral vaccine that contains genes encoding PSA and
three T cell co-stimulatory molecules (TRICOM: ICAM-1,
B7.1, and LFA-3) [53]. PROSTVAC is currently in phase
III clinical trials for prostate cancer. With a similar design,
PANVAC is a recombinant poxviral vaccine that contains
genes encoding MUC1, CEA, and TRICOM. Of the 12 met-
astatic breast cancer patients enrolled, the median time to pro-
gression was 2.5 months, with one patient TTP greater than

Table 2 Recently completed clinical trials of immunotherapy in breast cancer

Therapy Adjuvant Number of participants Results Stage Ref

Nelipepimut-S E75 (HER2)
NeuVax™

GM-CSF 182 2-year DFS: overall, 94.3 vs. 86.8 % (P=0.08)
HER2-low tumors, 94.0 vs. 79.4 % (P=0.04)
HER2-positive tumors, 90.3 vs. 83.3 % (P=0.44)

Early [29••]

GP2 (HER2) GM-CSF 172 Recurrence rate, 4.3 vs. 11.6 % (P=0.41) Early [80]

AE37 (HER2) GM-CSF 298 Recurrence rate, overall 12 % RRR P=0.70 Early [81]

AE37/GP2 GMCSF 28 Immune response observed Early [82]

Theratope™ Sialyl-Tn KLH 1028 OS, 23.1 vs 22.3 months (P=0.916)
TTP, 3.4 vs 3.0 months (P=0.353)
ER+: OS, 39.6 vs 25.4 months (P=0.005)

Metastatic [37••]

KLH keyhole limpet hemocyanin
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37months, and median overall survival was 13.7 months [54].
Vaccinia virus engineered to produce MUC1 and IL-2 has
been evaluated in metastatic breast cancer, with two of 31
patients having a clinical response [55].

Autologous Dendritic Cell Vaccines Dendritic cells can be
generated from the peripheral blood of patients, loaded with
tumor antigen proteins or peptides, and used as vaccines. Den-
dritic cell vaccines are potent, but technically and logistically
challenging, as they require specialized cell processing labo-
ratories. There are many methods for generating DCs, but
monocyte-derived dendritic cells from breast cancer patients
are thought to preferentially induce CD4+CD25+Foxp3+ reg-
ulatory T cells [56, 57].

Sipuleucel-T (Provenge) was the first cellular vaccine that
was FDA-approved in 2010. Sipuleucel-T consists of autolo-
gous APCs that have been pulsed with a fusion protein of
prostatic acid phosphatase and GM-CSF and then re-infused
into the patient. In the phase III IMPACT trial [58], sipuleucel-
T demonstrated improved median overall survival by
4.1 months in metastatic castrate-resistant prostate cancer.
Sipuleucel-T is used for the treatment of advanced prostate
cancer [3].

The HER2-targeted version of sipuleucel-T, termed
lapuleucel-T (APC8024, Neuvenge) remains an investigation-
al agent. Lapuleucel-Tconsists of autologous peripheral blood
mononuclear cells (containing APCs), which are cultured
ex vivo with a recombinant fusion protein of portions of
HER2 linked to GM-CSF. An initial phase I study of
lapuleucel-T showed modest activity in advanced breast can-
cer and is currently being evaluated in bladder cancer.

Dendritic cell vaccines have been evaluated in combination
with IL-2 for breast cancer and other cancers [59]. HER2
peptides have been delivered by pulsing peptides onto ex
vivo-generated autologous dendritic cells. Since HER2
overexpression plays a critical role in breast cancer develop-
ment and is expressed in a subset of patients with high-risk
ductal carcinoma in situ (DCIS), these HER2-targeted vac-
cines have also been tested in the neoadjuvant setting for
DCIS [60] [61]. In another trial for patients with DCIS, pe-
ripheral blood monocytes were activated with IFN and com-
bined with a bacterial toxin, LPS and HER2/neu peptides,
which resulted in durable immunity up to 52 months against
HER2 [62].

Cellular Vaccines Polyvalent vaccines (autologous or alloge-
neic) are derived from whole tumor cells or dendritic cells
fused with tumor cells, loaded with tumor lysates, or
transfected with tumor-derived RNA or DNA. Immune mon-
itoring of these complex immunotherapies is difficult, since
identifying which tumor antigens are immunogenic is techni-
cally difficult; as with dendritic cells, the production of cellu-
lar vaccines is labor-intensive [13••].

Adjuvants for Cancer Vaccines

Adjuvants are substances that enhance antigen immunogenic-
ity, such as the activation of IFN-γ-producing T cells. Classi-
cal adjuvants including either alum or water-in-oil emulsions
have been generally ineffective at producing strong TH1 re-
sponses [63] [13••]. GM-CSF is a common adjuvant used in
immunotherapy clinical trials, as is Montanide ISA-51.
The identification of molecular pathways involved in
innate immune responses has led to the development of
targeted adjuvants [64]. IDO blunts T cell function by
promoting enzymatic degradation of tryptophan in the tu-
mor microenvironment. IDO is overexpressed in many tu-
mor types, including breast cancer. IDO inhibition has
been evaluated following induction chemotherapy and con-
current chemoradiation for lung cancer [65]. In breast can-
cer, IDO inhibition by indoximod was well tolerated as an
adjuvant in combination with a P53-directed dendritic cell
vaccine in a phase I clinical trial (ASCO 2013 abstract
3069).

Additional targeted adjuvants, such as antibodies that target
4-1BB or OX40 or STAT3 inhibitors, enhance T cell activity
by activation of antigen-presenting cells and are being evalu-
ated in many combination immunotherapy trials. IMP321 is a
soluble form of LAG-3, which is an MHC class II agonist and
activates antigen-presenting cells, resulting in secondary acti-
vation of CD8+ memory cells. In a recent phase I/II trial with
paclitaxel as first-line therapy for metastatic breast cancer (n=
30), both enhanced immunity and overall response rate (ORR)
of 50 % were observed [66].

Checkpoint Blockade (CTLA-4, PD-1/PD-L1)

Lessons From Melanoma Most of the seminal advances in
immunotherapy have emerged from the study of melanoma,
which has long been recognized as an immune-sensitive tu-
mor [67]. Starting with cytokine therapy with IL-2 [67], im-
mune therapy in melanoma has focused on peptide-based vac-
cines [68] and adoptive T cell therapy with in vitro-expanded
CD4+ and CD8+ T cells [69]. A major clinical breakthrough
of immunotherapy was the identification of the T cell check-
point inhibitor pathways, CTLA-4 and PD-1/PDL1, which
function to dampen both CD4+ and CD8+ T cell responses.
Ipilimumab was the first therapy to target this checkpoint
mechanism by activating memory T cell immunity against
tumor antigens. Because checkpoint blockade is nonspecific,
off-target effects include induction of autoimmunity and
immune-related adverse events (irAEs). Ipilimumab increases
the frequency of CD4+ and CD8+ T lymphocytes in the pe-
ripheral blood in addition to antibody responses against tumor
antigens. In the landmark phase III clinical trial in metastatic
melanoma, treatment with ipilimumab (3 mg/kg every
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3 weeks) was associated with an improved median survival of
3.7 months [63]. The effect of ipilimumab in some patients
was durable, with 24 % of patients alive after 2 years. This led
to FDA approval of ipilimumab in March of 2011 for first- or
second-line therapy of unresectable stage III or stage IV mel-
anoma [3]. Because blockade of the checkpoint CTLA-4 mol-
ecule inhibits T cell regulation, careful evaluation of the dos-
ing frequency and timing is therefore critical to minimize
irAEs while preserving anti-tumor efficacy.

Checkpoint Blockade in Breast Cancer There are emerging
trials of checkpoint inhibition and breast cancer, but
evidence of clinical efficacy awaits the larger phase II
clinical trials. The combination of tremelimumab (anti-
CTLA-4) and exemestane in advanced breast cancer re-
sulted in induction of activated T cells [70]. IMP321 is a
soluble form of LAG-3, an MHC class II agonist, which acti-
vates antigen-presenting cells, resulting in secondary activa-
tion of CD8+ memory cells. In a recent phase I/II trial with
paclitaxel as first-line therapy for metastatic breast cancer
(n=30), both enhanced immunity and ORR of 50 % were
observed [66].

In addition to CTLA-4, the PD-1/PD-L1 inhibitory path-
way has developed as a promising target for activating T cell
immunity in cancer. Nivolumab, the first anti-PD-1 antibody
in clinical trials, has also led to durable remissions in melano-
ma [71] and is currently approved in Japan for clinical use.
The PD-1 inhibitor pembrolizumab (Keytruda) was recently
approved by the FDA for refractory metastatic melanoma and
is in trials in advanced non-small cell lung cancer. Antibodies
to PD-1, such as nivolumab, are also being evaluated in mel-
anoma, renal cell carcinoma, prostate cancer, non-small cell
lung cancer, colorectal cancer, and breast cancer. In general,
the immune-related toxicities associated with PD-1 blockade
have been lower than previously seen with ipilimumab. In
melanoma, the combination of nivolumab plus ipilimumab
was associated with a >80 % decline in tumor burden at
12 weeks in respondents (ORR 53 %) [72]. These exciting
results have led to the evaluation of checkpoint blockade
inhibitors in breast cancer. In a recent analysis of PD-L1,
CTLA-4, and IDO-1 in TNBC patients, cancer cell-
specific overexpression of PD-L1 protein was present in
50 % of TNBC tumors and more often seen with andro-
gen receptor co-expression (ASCO 2014 abstract 1001).
Several early phase clinical trials of PD-1/PD-L1 blockade,
alone or in combination with CTLA-4 blockade, are on-
going in advanced triple-negative breast cancer. Similar
early-phase trials are underway to target the costimulatory
OX40 pathway, as high OX40 expression is associated
with malignant transformation, progression, invasion, and
metastasis in breast cancers [73]. A phase I/II trial is un-
derway with anti-OX40 antibodies for patients with
metastatic breast cancer.

Targeting Tregs: the Synergy of Chemotherapy
and Immunotherapy

Certain chemotherapies, including cyclophosphamide,
taxanes, and anthracyclines, alter immune suppressor mecha-
nisms that are induced by the tumor microenvironment [74].
Cyclophosphamide in low doses decreases Treg populations
and enhances anti-tumor responses [75]. The neoadjuvant ad-
ministration of taxanes in locally advanced breast cancer in-
creases CD8+ T lymphocytes within the tumor parenchyma
[76].

These findings have led to the use of low-dose cyclophos-
phamide prior to vaccination to decrease Treg populations.
For example, a single-arm phase II study evaluated the com-
bination of cyclophosphamide, trastuzumab, and an allogene-
ic GM-CSF-secreting breast cancer vaccine for 20 patients
with advanced breast cancer. The overall median
progression-free survival (PFS) was 7 months and overall sur-
vival (OS) was 42 months, with a 5-year survival rate of 30%.
As is commonly observed in immunotherapy trials, there was
a trend toward longer PFS and OS in patients who developed
antigen-specific immunity relative to those who did not [77••].
CD25-targeted antibodies can also deplete regulatory T cells
to allow for more effective antigen presentation and boost
vaccine responses. CD25 blockade with daclizumab depleted
regulatory T cells and enhanced the immunogenicity of a
multi-peptide vaccine [78]. Monoclonal antibodies that target
tumor antigens (such as the anti-HER2 MAb trastuzumab)
may improve CD8+ T cell immunity by enhanced antigen
presentation [79].

Future Directions

Immunotherapy has demonstrated clinical benefit in phase II/
III clinical trials for several solid tumors, such as melanoma,
lung and prostate cancer. Multiple clinical trials are now un-
derway to evaluate breast cancer immunotherapy, including
vaccines, adjuvants, and checkpoint blockade, alone or as
multimodality therapy. Successful targeted immunotherapy
requires not only the persistent expression of antigen by can-
cer cells but also the successful and sustained mobilization of
sufficient numbers of effector T cells that recognize these an-
tigens. The highest likelihood for success will be in the setting
of disease prevention for high-risk individuals, treatment of
DCIS, and early-stage cancers to eradicate minimal residual
disease that may not be responsive to cytotoxic or endocrine
therapies. Unlike cytotoxic therapies, the slower response
rates and delayed effects of immune therapy require novel
approaches for clinical trial design. Identification of immune
biomarkers that correlate with meaningful clinical benefit is
needed to identify patients that are likely to respond to these
agents [3]. The rapid development of proteome-wide immune
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monitoring and tumor genomic sequencing in concert with
epitope prediction is leading to the identification of novel
antigenic targets in breast cancer [13••]. These findings may
lead to personalized vaccines and immunotherapy for breast
cancer patients. It is likely that immunotherapy will soon
join multimodality therapy for the treatment of breast
cancer.
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