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Abstract
Purpose of Review Application of deep learning (DL) is growing in the last years, especially in the healthcare domain. This 
review presents the current state of DL techniques applied to electronic health record structured data, physiological signals, 
and imaging modalities for the management of heart failure (HF), focusing in particular on diagnosis, prognosis, and re-
hospitalization risk, to explore the level of maturity of DL in this field.
Recent Findings DL allows a better integration of different data sources to distillate more accurate outcomes in HF patients, 
thus resulting in better performance when compared to conventional evaluation methods. While applications in image and 
signal processing for HF diagnosis have reached very high performance, the application of DL to electronic health records 
and its multisource data for prediction could still be improved, despite the already promising results.
Summary Embracing the current big data era, DL can improve performance compared to conventional techniques and 
machine learning approaches. DL algorithms have potential to provide more efficient care and improve outcomes of HF 
patients, although further investigations are needed to overcome current limitations, including results generalizability and 
transparency and explicability of the evidences supporting the process.
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Introduction

Heart failure (HF) represents a severe condition affect-
ing approximately 2% of the adult worldwide population, 
thus counting around 36 million of individuals globally; it 
consists of a chronic and progressive syndrome character-
ized by structural or functional cardiac dysfunctions with 
reduced (HFrEF; < 40%) or preserved (HFpEF; ≥ 50%) left 
ventricular ejection fraction [1, 2, 3, 4]. HF represents the 

most rapidly growing cardiovascular disorder globally. Its 
pathological spectrum involves numerous symptoms able to 
greatly affect the patient’s quality of life, as dyspnea, fatigue, 
and poor exercise tolerance, leading to frequent hospitaliza-
tions and shortened life expectancy [2, 3].

Cardiac conditions and causes of death vary in the HF 
population, and although the main underlying causes of this 
syndrome have been identified, including coronary artery 
disease, valvular heart disease, hypertension, cardiomyopa-
thies and other (Fig. 1), the prevalence of HF is expected to 
increase, accounting for a substantial burden to the health-
care system [4, 5]: specifically, due to the ageing population, 
treatment costs relevant to HF are expected to double by 
2030 [6].

Despite advancements in clinical management, surgi-
cal procedures, and medical devices in the treatment of all 
causes associated with HF, significant challenges still persist 
in current treatments [5], and HF remains one of the main 
global health concerns [6]. Modeling the driving factors of 
HF for achieving high prediction accuracy in both diagno-
sis and prognosis is still an unmet medical need. Accord-
ingly, there is the need for novel approaches to optimize 
the management of this chronic disease, to improve clinical 
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decision-making, and to ultimately reduce related healthcare 
expenditures. As HF has been recognized as a heterogene-
ous multifactorial syndrome, improvement in the assessment 
and management of HF patients requires to integrate data 
obtained by different sources (e.g., laboratory, echocardio-
graphic and morphologic data) and to handle the complex 
interplay of various symptoms and comorbidities (both 
cardiovascular and non-cardiovascular) involved in the HF 
pathology.

Healthcare is undergoing a new era characterized by the 
availability of a massive amount of biomedical data, which 
necessarily opens to new opportunities. The advancement of 
big data solutions within the healthcare system has allowed 
to store and manage huge amount of data with the aim to 
develop new disease risk assessment tools and prediction 
models, but exploiting in clinical practice these advances 
leads to unprecedented challenges regarding data analysis 
and interpretation, as well as many difficulties related to het-
erogeneity, quality, and integrity of the healthcare data [7].

Machine learning (ML) and deep learning (DL) meth-
ods, as a branch of artificial intelligence (Fig. 2), have 
experienced a rapid growth over the past few years achiev-
ing state-of-the-art performance in various domains, 
including medical imaging, diagnosis, and prognosis [8, 
9, 10]. DL is a subfield of ML and represents a family of 
algorithms that can be used to learn complex and highly 
predictive patterns that generally remain unexplored using 
conventional statistic approaches. In contrast to ML, 
learning solutions based on DL do not require to design a 

priori feature extractors from which the learning algorithm 
detects patterns [11]. In this way, the algorithm is free to 
learn by itself, automatically defining the features to be 
considered and the patterns to be searched in order to per-
form classification or prediction. An additional advantage 
for DL solutions is the possibility to integrate different 
structured and unstructured data types as input, which is 
particularly relevant considering the typical heterogeneity 
of the healthcare data [11].

In this context, the aim of this review is to provide key 
concepts for DL that clinicians need to be familiar, and 
to give an overview of the current advancements of DL 
research in several clinical applications for the treatment 
of HF patients.

The paper is organized as follows: in the “Deep Learn-
ing: Key Concepts for Clinicians” section, the fundamen-
tal concepts of DL along with a presentation of common 
DL models used in cardiology are given; in the “Deep 
Learning in HF Diagnosis” and “Deep Learning in HF 
Prognosis (End of Hospitalization)” sections, an overview 
of recent DL approaches for HF diagnosis and progno-
sis, respectively, are described. Thereafter, in the “Deep 
Learning for Predicting HF Readmission: from EHR to 
Home Monitoring” section, a review of DL solutions 
for predicting HF hospital readmission is presented, and 
in the “Challenges for Deep Learning” section, current 
challenges for DL solutions are discussed. Finally, in the 
“Conclusion” section, conclusions are drawn with a focus 
on the future directions for DL applied to the treatment 
of HF patients.

Fig. 1  Schematization of the different pathological conditions that 
may lead to heart failure

Fig. 2  Evolution of artificial intelligence and its main components, in 
which deep learning represents a subset of machine learning methods
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Deep Learning: Key Concepts for Clinicians

As previously introduced, DL constitutes a subset of ML 
methods building on the foundations of neural networks, 
thus trying to mirror the way the human brain processes 
data (in particular, its learning ability). In contrast to 
conventional ML methods, requiring human interaction 
to define which features in the available data have to be 
considered important for the solution of the classification/
prediction problem, DL is meant to learn by itself how to 
extract knowledge from the data, without being explic-
itly programmed [12]. In other words, DL automatically 
extracts the features from the data that are considered 
important to solve the given task, thus removing the need 
to select them beforehand, and without involving prior 
knowledge to explain the observed variability in the data. 
These fundamental characteristics have generated enthu-
siasm about the potential of DL to solve problems beyond 
the human capability, and in recent years, the utilization 
of DL approaches, that have demonstrated to perform 
at human-level efficiency and in certain tasks even with 
higher performance than expert clinicians [12, 13, 14], 
has surpassed that of ML. The main reasons behind this 
success, compared to learning algorithms based on hand-
designed methods, have to be found in the increasing avail-
able computational power, in the larger availability of data, 
and in the rapid algorithms’ development. Indeed, in few 
years, DL has been able to show its potential in defining 
new opportunities for improving therapies and treatment, 
in performing early diagnosis and in reducing the length 
of hospitalization.

Within DL, artificial neural network (ANN) is an infor-
mation-processing system, whose structure and function-
ality simulate the nervous system and the human brain 
[15]. The main element is the neuron, a simple process-
ing unit, that sends information to other neurons through 
action potentials, and working in parallel these neurons 
define a layer. As the brain processes information through 
multiple stages of transformation, similarly the ANN is 
characterized by multiple layers of neurons, in order to 
achieve learning capability [15]. Thanks to the fact that 
each layer performs a nonlinear mapping based on the pre-
vious layer’s output, this allows the network to learn via 
progressive levels of information abstraction [15, 16]. This 
ability to learn features at multiple level of abstraction 
allows the network to learning complex functions, without 
depending on manually developed features.

The most common type of ANN is the convolutional 
neural network (CNN), which was inspired by the struc-
ture of the human visual system. A CNN can be consid-
ered an ANN with many identical copies of neurons in 
its layers, thus utilizing the local relationship within the 

data to extract spatial features. This allows the network 
to increase the number of neurons, and hence its com-
putational power, while keeping the number of learnable 
parameters relatively small. CNNs are designed to process 
arrays of data: in 1D as signals (e.g., electrocardiographic, 
audio, or textual data); in 2D as images; and in 3D as 
video or volumetric data [16]. Considering an image as 
input, the first layers of the CNN are associated in learn-
ing how to recognize basic lines and curves; moving more 
deeply, the following layers apprehend shapes and blobs, 
while in the last layers the ability to classify increasingly 
complex objects within the image is reached. One of the 
most popular CNN architecture for medical image analysis 
is represented by the U-Net [17], that has shown impres-
sive performance, even with a scarce amount of training 
samples.

Recurrent neural network (RNN) represents another class 
of ANN, able to recognize patterns in temporal or sequen-
tial data [15, 18]. In contrast to common ANN, where the 
inputs are independent from each other, the main character-
istic of RNN is the ability to remember information from 
prior inputs to generate the current output. In this way, the 
output of RNN depends on the current input and on all the 
previous elements of the sequence, where each neuron acts 
as a memory cell while computing operations. While CNNs 
are suitable for handling spatial information, RNNs are more 
suitable for handling temporal or sequential information. For 
example, given a sequence of frames, a RNN takes the first 
frame and makes a prediction; the prediction of the follow-
ing frame is conditioned by the information obtained on the 
previous frame. Two popular architectures in the RNN fam-
ily are the gated recurrent units (GRU) and the long short-
term memory (LSTM), designed to process information over 
extended time [19, 21].

More recently, generative adversarial network (GAN) has 
been introduced in the field of DL, and has increasingly been 
used in several medical image analyses applications, such 
as denoizing, reconstruction, segmentation, synthetization, 
classification, and image-to-image translation. Thanks to its 
impressive performance, GAN has gained a lot of attention: 
as its name suggests, unlike conventional ANN, GAN con-
sists of two networks, known as generator and discrimina-
tor, trained in an adversarial way [22]. While the generator 
tries to generate new data, the discriminator learns to dis-
tinguish the synthetic data from the real ones. The goal of 
the discriminator is to force the generator in improving its 
performance in learning to generate a more realistic data 
distribution, with the aim of deceiving the discriminator.

For all these methods, the common development pro-
cedure starts from the availability of a labeled (i.e., gold 
standard) dataset, where each data is classified by the 
expert binary (i.e., healthy and pathologic) or multi-class 
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classification. This dataset is divided into training, valida-
tion, and testing sub-datasets: the training dataset is used 
to automatically generate the features able to reach the 
expected goal, compared to the gold standard labels in terms 
of specific, sensitivity, and accuracy, often summarized in 
the area under the receiver operating characteristics (ROC) 
curve. The validation is used to further tune other parameters 
in the network in the attempt to further optimize its perfor-
mance. Finally, the real performance is computed by testing 
the developed network on the testing dataset.

Deep Learning in HF Diagnosis

An early diagnosis of HF may reduce patients’ mortality 
and morbidity. Consequently, wide efforts have been put in 
the research to develop algorithms to support clinicians in 
early diagnosing HF. HF diagnosis may be achieved through 
the analysis of electrocardiography (ECG), as well as medi-
cal images, mainly acquired through magnetic resonance 
(MRI) and ultrasound (US) images. Furthermore, electronic 
health records (EHRs, also known as medical records) can 
be used to this purpose. Early approaches mainly exploited 
model-based algorithms, while more recently data-driven 
algorithms (i.e., ML and DL) have shown interesting results 
given their ability to tackle the complexity and variability 
of clinical data acquired from subjects at risk of developing 
HF. The papers surveyed in this section are summarized in 
Table 1, where the publication date, data source, aim, algo-
rithm, and dataset size are specified.

The widest literature in the field can be found for the pro-
cessing of the ECG signal. In Kwon et al. [23••], a ML algo-
rithm based on ANN was proposed for HF identification. 
The ANN processes both demographic and ECG features, 
achieving an area under the receiver operating characteristics 
curve (AUC) of 0.89. In Çınar et al. [24•], a more advanced 
algorithm based on CNNs was used to automatically extract 
features from the ECG spectrogram. The features were clas-
sified using support vector machines (SVMs), achieving an 
accuracy of 0.97.

A fully DL-based pipeline was proposed by Acharya et al. 
[25] which exploits a CNN to automatically extract relevant 
features from the ECG signals and performs an early diagno-
sis of HF. The pipeline allows to perform end-to-end train-
ing, lowering the training time, with an achieved accuracy 
of 0.99. Lih et al. [26] coupled CNNs with long short-term 
memory (LSTM) to keep into account the temporal informa-
tion naturally encoded into the ECG, obtaining an accuracy 
of 0.98. A similar approach was used in [27], which further 
included an inception module in the CNN to allow multi-
scale analysis, thus achieving an accuracy of 0.99.

A more complex CNN architecture, based on U-Net, was 
proposed in [28], where residual blocks were exploited to 

perform a more accurate feature extraction and classifica-
tion, reaching an AUC of 0.90. Residual block adds the out-
put of a previous layer to the output of the following layer 
to extract some additional spatial information. In [29], the 
first layer of a custom CNN was replaced by Gabor filters 
to lower the training complexity while extracting relevant 
high-frequency ECG features, with a reported accuracy of 
0.99. Gabor filters are linear filters used for texture analy-
sis and feature extraction, which have been shown excellent 
localization properties both in spatial and frequency domain, 
simulating the receptive fields of the human visual system 
[30••].

As regards other signals, a recent work [29] investigated 
the possibility to diagnose HF from heart sounds, where 
logistics regression and gated recurrent units were used to 
identify the presence of HF: despite the promising results 
(accuracy = 0.99), more research is still required in this field.

In the last decades, also the analysis of EHRs to perform 
HF diagnosis has been receiving attention, thanks to the 
large availability of digitalized data, as well as to the devel-
opment of more and more accurate ML/DL algorithms. Choi 
et al. [30••] proposed a milestone paper on the use of recur-
rent networks for early detecting HF onset (achieving an 
AUC of 0.88) and, based on it, several works have been pub-
lished following a similar paradigm. Examples include [31], 
that used LSTM to process time-stamped EHRs containing 
medicinal information achieving an AUC of 0.89, and [32], 
that classified a large variety of features (e.g., demographic, 
procedural, medicinal features) with LSTM achieving an 
AUC of 0.82. A more advanced approach was proposed by 
Ma et al. [33•] that built an embedding from the EHR using 
CNNs and attention mechanisms, where the embedding was 
classified with a custom-built prediction model achieving an 
accuracy of 0.91.

With the goal of predicting HF onset, applications of ML 
and DL to the field of image processing have been also pro-
posed. In particular, several papers have focused on MRI 
imaging: in [34], a DL algorithm for the automatic segmen-
tation of the left ventricle as a prior to evaluate the cardiac 
function in HF patients was proposed, where a Dice similar-
ity coefficient of 0.97 was achieved. A ML method based 
on k-nearest neighbors was used in [35] to perform texture 
analysis of myocardial maps and identify early symptoms of 
HF, achieving an AUC of 0.85.

Besides MRI, other works focused on echocardiographic 
imaging: Tabassian et al. [36•] analyzed spatiotemporal 
patterns of echocardiographic deformation curves using 
k-nearest neighbors with an accuracy of 0.89, while Cikes 
et al. [37••] evaluated echocardiographic patterns using 
k-means clustering to identify pathogroups in patients with 
HF. An interesting attempt of predicting HF markers from 
chest radiographs with DL was performed by Seah et al. [38] 
obtaining promising results (AUC = 0.82), but more research 
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is still needed to understand the potentiality of DL in pro-
cessing chest radiographs for HF diagnosis.

Deep Learning in HF Prognosis (End 
of Hospitalization)

Several studies have used DL to predict different outcomes 
in HF patients [39, 40•]. Specifically, the measured out-
comes that were studied include mortality, hospitaliza-
tions, readmissions, risk prediction, need for mechanical 
circulatory support, heart transplantation, and treatment 
effect (Table 2). The general process of DL techniques 
regarding HF prognosis is based on data obtained through 
the EHRs that might include demographic information, 
treatment and medication, laboratory results, ECG, and 
echocardiographic findings before and during hospital 
stay. Wang et al. [41••] applied ANN for early detection of 
patients’ HF death in three observation windows (i.e., in-
hospital, 1-month and 1-year mortality), studying 10,203 
in-patient EHRs. It is noteworthy the introduction of a 
focal loss function [42] into the proposed framework, to 
deal with the imbalanced class problem, and a feature rear-
rangement layer to improve feature representation of the 
convolutional network. The proposed ANN provided an 
AUC in predicting mortality of 0.904 (in-hospital), 0.891 
(1-month observation), and 0.887 (1-year observation).

Kwon et al. [43] used a DL-based model in a multi-
center cohort of acute HF patients for predicting in-hospi-
tal mortality, and at 12 and 36 months, by integrating clini-
cal and laboratory data. Training included 2165 patients, 
while validation was performed on 4759, reaching an 
AUC for predicting in-hospital and 12 and 36 months 
mortality of 0.880, 0.782, and 0.813, respectively. Over-
all, DL outperformed both the conventional Get with the 
Guidelines–Heart Failure (GWTG-HF) score, and the 
Meta-Analysis Global Group in Chronic Heart Failure 
(MAGGIC) score [44, 45], as well as other ML models. 
Since GWTG-HF and MAGGIC cannot be used for initial 
treatment or screening, Kwon et al. [46•] applied DL to 
predict in-hospital mortality only on echocardiographic 
data in 25,776 patients. In a subgroup analyses of HF, 
DL provided an AUC (0.913) higher than both MAGGIC 
(0.806) and GWTG-HF (0.783) scores. Medved et al. [47] 
compared the International Heart Transplantation Survival 
Algorithm (IHTSA) based on DL, with the Index for Mor-
tality Prediction After Cardiac Transplantation (IMPACT), 
for predicting 1-year survival after heart transplantation. 
In 27,705 patients (5597 in the test cohort), DL exhibited 
an AUC of 0.654, with improved performance compared 
to the IMPACT model (AUC 0.608). Although IHTSA 
was designed to predict long-term survival, it showed 
better discrimination at 1-year mortality than IMPACT. 

Therefore, even though modest, these results are promising 
for DL techniques applications in clinical practice.

To model early HF readmission prediction, a deep unified 
network, an innovative architecture designed to avoid overfit-
ting including both structured (i.e., demographics, clinical and 
laboratories results) and unstructured (physician notes and 
discharge summaries) data from EHRs of 11,510 patients, 
was applied [48•]. Obtaining an AUC of 0.705, the developed 
30-day readmission model reported the best performance 
compared to logistic regression (LR) (0.664), gradient boost-
ing (0.650), and maxout networks (0.695). In a novel study 
applying DL to EHRs for treatment effect prediction on 736 
HF patients, the proposed generated GAN learning strategy 
outperformed benchmark models in terms of both accuracy 
(0.688) and AUC (0.654) [49•]. The DL treatment effect pre-
diction model used two auto-encoders for learning features 
of both patient characteristics and treatments from EHRs. 
Specifically, the DL scheme could generate and discriminate 
the predicted treatments from the real ones so that highly rep-
resentative features were extracted from the EHRs data [49•].

In [50•], 93,260 HF patients were analyzed to identify pre-
ventable outcomes, such as hospitalization and emergency 
department visits. Compared to ML and LR models, DL 
produced the highest AUC of 0.778 and 0.681, respectively. 
Remarkable was the effort of Li et al. [51••] in terms of inter-
preting DL models, by developing an interactive clinical risk 
prediction system based on RNN with an intuitive visualiza-
tion design, increasing transparency to the information infra-
structure, thus allowing visual interpretation of the prediction 
results. On 554 HF and 1662 control patients, the proposed DL 
model outperformed the state-of-the-art approaches by approxi-
mately 1.5%. Recently, Lu et al. [52••] proposed a DL approach 
to model long-term and short-term HF clinical trajectories on 
8093 patient with congenital heart disease. The network out-
performed various baseline models and was able to predict 
different types of patient trajectories (AUC 0.863). A separate 
study used DL to add prognostic value of data acquired from 
a cardiopulmonary exercise test (CPET) [53]. In another study 
involving 1156 HF patients, DL demonstrated little improve-
ment compared to statistical model (AUC 0.842 vs. 0.837), 
while both were superior to CPET-risk score (AUC 0.759) [54].

Finally, ML and DL seem promising in identifying distinct 
patient subgroups with HFpEF using unsupervised learn-
ing to deliver more tailored clinical care. These techniques 
make it possible to learn from an input dataset without the 
need for training with labeled data (expected outputs). In fact, 
the model learns to draw inferences and identify significant 
features within the unlabeled data space, for the purposes of 
clustering or data reduction. The pathological development of 
HFpEF has been attributed to a complex interplay of cardiac 
and extracardiac dysfunctions [55, 56] leading to a marked 
phenotypic heterogeneity among patients of this population. 
This diversity highlights the fact that there is not a single 
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pathological process underlying the observed dysfunction, 
thus affecting the targeted management plan. Recently, dif-
ferent studies made progress in clustering HFpEF patients by 
integrating multiple patient data, as step towards personalizing 
treatment and improving prognosis of the disease [57, 58]. 
Pandey et al. [59] analyzed 1242 HFpEF to predict high- and 
low-risk phenogroups and validated the network in 5 external 
cohorts. The DL approach showed higher AUC than the 2016 
American Society of Echocardiography guideline–based left 
ventricular grades [60] for predicting elevated left ventricular 
filling pressure (0.883 vs. 0.676). Kaptein et al. [61] proposed 
an unsupervised learning approach to identify subgroups of 
patients with asymptomatic diastolic dysfunction, where three 
subgroups were identified. Similarly, in [62], a model-based 
clustering on clinical and echocardiogram variables in 320 
HFpEF patients was applied, from which six phenogroups 

were derived. Although HFpEF remains a challenging clini-
cal condition to manage, clustering patients with model-based 
learning using echocardiographic and EHRs data may provide 
better granularity with improved prognostic benefit for patients 
with HFpEF compared to the current clinical paradigm, thus 
creating phenotype clusters that are strongly linked to survival. 
This new approach may lead to improved personalized care 
pathways for treating patients with HF.

Deep Learning for Predicting HF 
Readmission: from EHR to Home Monitoring

The significantly high rate of readmissions in hospital after 
HF, with 61.3% of the patients being readmitted for HF 
within 1 year after discharge [63], has a negative impact 

Table 2  Summary of recent studies exploiting deep learning algorithms in HF prognosis

HF, heart failure; HERs, electronic health records; AUC , area under the curve; ANN, artificial neural network; CNNs, convolutional neural net-
works; RNNs, recurrent neural networks; GAN, generative adversarial networks

Author Year Outcome Data source Dataset Algorithm Results

Medved et al. [47] 2018 Survival prediction 
after heart trans-
plantation

EHRs 27,705 patients ANNs Reduction of 12% for 
ROC and 10% for 
C-index by using 
deep learning tech-
nique

Wang et al. [41••] 2020 Mortality prediction EHRs 10,203 patients CNNs AUC in-hospital 0.904, 
1-month 0.891, 
1-year 0.887

Golas et al. [48•] 2018 Readmission predic-
tion

EHRs 11,510 patients Deep unified net-
works

AUC 0.705

Kwon et al. [43] 2019 Mortality prediction EHRs 6924 patients ANNs AUC in-hospital 0.880, 
12-month 0.782, 
36-year 0.813

Lewis et al. [50•] 2021 Preventable hospitali-
zations, emergency 
department and 
costs

Clinical history 93,260 patients ANNs AUC for deep learning 
were 0.778, 0.681, 
and 0.727, respec-
tively

Ashfaq et al. [39] 2019 Readmission predic-
tion

EHRs 7655 patients RNNs with long 
short-term memory

AUC 0.77

Chu et al. [49•] 2020 Treatment effect 
prediction

EHRs 736 patients GAN AUC 0.688

Kwon et al. [46•] 2019 In-hospital mortality Clinical + echocardi-
ography

760 HF ANNs AUC 0.913

Li et al. [51••] 2020 Risk prediction EHRs 554 HF + 1662 
controls

RNNs RNN outperforms 
the state-of-the-
art approaches by 
approximately 1.5%

Pandey et al. [59] 2021 Phenotyping diastolic 
dysfunction in HF 
with preserved 
ejection fraction

Echocardiography 1242 patients ANNs AUC 0.88

Hearn et al. [53] 2018 Clinical deterioration Cardiopulmonary 
exercise test data

1156 HF ANNs AUC 0.842

Lu et al. [52••] 2021 Long-term trajectory 
prediction

EHRs 8093 HF RNNs with gated 
recurrent units

AUC 0.863
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on patients’ quality of life, as well as on the healthcare sys-
tems. Therefore, it appears crucial to develop efficient tools 
in order to predict patient’s re-hospitalization probability 
and related causes of readmission. This would primarily help 
tailor patients’ remote support and education after discharge. 
Also, the early identification of patients at higher risk would 
improve the scheduling of potentially life-saving follow-
ups. Accordingly, several works focused on this problem, 
exploring the use of DL methods applied to different types 
of data. Those studies are discussed below, and summarized 
in Table 3.

Since discharge, e-Health solutions could support the 
prediction of patient’s outcome and probability of re-hos-
pitalization. Among these, EHRs contain a huge amount 
of data, ranging from anthropometrics and demographic to 
prescribed therapies, comorbidities, and vital signs. Several 
works in the literature examined the possibility to apply 
DL models to EHRs in order to make accurate predictions 
of hospital readmissions in HF patients. An example of 
the increasing interest towards this field is represented by 
CONTENT [64•], a DL model based on a RNN with gated 
recurrent unit aiming at predicting 30-day hospital readmis-
sions. It was developed using the EHRs of 5393 congestive 
HF patients, embedding data relevant to patients’ diseases, 
laboratory tests, and medications. Although outperform-
ing other existing models, the results obtained in this work 
remain unsatisfactory, with 38.94% mean precision-recall 
AUC, 61.03% receiver operating characteristic AUC, and 
69.34% accuracy. Similar results were also obtained with a 
multi-layer perceptron ANN applied to a linked administra-
tive health dataset (10,757 over-65 HF patients) obtained 
from the Western Australian Data Linkage System [65•], 
as well as with a RNN combined with conditional random 
fields applied to a large hospital claims dataset [66•]. A deep 
unified network model developed on data obtained during 
inpatient and outpatient visits provided slightly improved 
results, with mean AUC equal to 70.5% and an accuracy of 
76.4% in predicting 30-day readmission in HF patients [48•].

A key characteristic for a successful introduction of an AI 
model in the clinical practice stands in its interpretability, 
thus generally resulting in a higher propensity towards ML 
compared to DL techniques. Attention-based neural network 
prediction models represent a valid solution. A recent study 
[40•] evaluated the possibility to predict all-cause readmis-
sion in HF patients within 1 year after discharge using an 
attention-based neural network built on data contained in the 
EHRs of 736 HF patients. The proposed model assigns to 
each feature an “attention weight” indicating its importance 
in predicting readmission, and thus supporting clinicians in 
identifying patients at higher risk of a forthcoming relapse. 
For example, the analysis of the levels of B-type natriuretic 
peptide is widely used in clinical practice for the diagnosis 
of HF. As expected, this clinical feature was associated with 

considerably higher attention rates in the majority of the 
patients compared to the other features. Results appeared 
promising, although the achieved statistics, including mean 
F1-score and AUC values, remained below 80%, and thus 
requiring further improvements.

The application of interpretable DL methods could also 
take advantage of big data coming from EHRs in order to 
characterize subtypes of HF patients. An example can be 
observed in the study of Xiao and colleagues [64•], in which 
the authors were able to identify 20 subgroups of congestive 
HF patients, each possibly exhibiting different comorbidi-
ties that could impact the progression of this syndrome and 
consequently the readmission risk [3]. This approach could 
pave the way towards the identification and development of 
personalized and targeted home-care pathways.

In this context, remote monitoring solutions could effec-
tively support HF patients in managing their condition and 
improving their quality of life, thus reducing the risk of read-
mission and mortality [67, 68]. Current methods primarily 
include telemonitoring with implantable devices, such as in 
the CardioMems [69] and the IN-TIME approach [70], which 
are recommended as Class II for use in selected patients by 
the 2016 ESC guidelines for the diagnosis and treatment of 
acute and chronic HF [3]. Thanks to the advances in technol-
ogy and communication systems, non-invasive telemedicine 
solutions, including telephone-based monitoring and educa-
tion, wearable and mobile health, have been implemented 
and tested, appearing particularly promising for patients that 
are not assigned to an implanted monitoring approach.

For example, remote monitoring of body weight is recom-
mended in HF patients. However, daily monitoring of this 
parameter alone showed no evidence in identifying higher 
risk patients [71, 72]. A successful example of non-invasive 
multi-parametric remote patient monitoring is represented 
by the TIM-HF2 (Telemedical Interventional Management 
in Heart Failure II) prospective randomized controlled trial, 
with 796 patients assigned to the remote monitoring group 
and 775 to the control group [73••]. The study involved 
the daily measurement and transmission of several physi-
ological parameters, including body weight, blood pressure, 
electrocardiogram, heart rate, and peripheral capillary oxy-
gen saturation, as well as a self-rated score of the health 
status, fostering the cooperation of the telemedical center 
with cardiologists and general practitioners. The collected 
data were analyzed using the CE-marked Fontane telemedi-
cine software (T-Systems International GmbH, Frankfurt, 
Germany), which integrates scalable business intelligence 
methods in order to assign a patient to a risk category [67]. 
Results showed that this approach effectively supported the 
identification of higher risk patients, accelerating tailored 
intervention and consequently reducing days lost during 
1 year of follow-up and all-cause mortality. A recent study 
further improved these results, implementing a DL neural 
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network model based on the TIM-HF2 database, which 
allowed to reach a mean AUC value of 84% [74••].

Wearable devices could additionally promote the con-
tinuous monitoring of patients’ health after discharge, thus 
representing an opportunity to improve remote monitoring 
and healthcare [75]. The LINK-HF study aimed at evaluat-
ing the accuracy of predicting deterioration which leads to 
re-hospitalization in HF patients using a wearable sensor 
(Vital Connect, San Jose CA) worn on the chest [76••]. Of 
note, this device recorded continuous acquisition of ECG, 
accelerometric signal, skin impedance, and skin tempera-
ture, thus permitting the monitoring of heart rate and its 
variability, arrhythmia burden, respiratory rate, physical 
activity, and body posture. Collected data were streamed 
to a smartphone and analyzed in Cloud. Similarity-based 
ML algorithms were able to generate a multivariate index 
which indicates the level of change of the acquired vital 
parameters. The presented platform appeared successful 
in predicting patient’s readmission due to worsening HF 
with a sensitivity from 76.0 to 87.5% at a specificity level 
of 85%.

Challenges for Deep Learning

DL has demonstrated promising results with better perfor-
mance in HF evaluation compared to ML and conventional 
algorithms, which could not be expected a priori. As DL 
algorithms require larger amount of data in order to provide 
high-quality results, this may limit their development espe-
cially in a clinical context, considering that the labeling data 
procedure is a time-consuming and tedious task for expert 
clinicians. Moreover, normal cases are often predominant 
over pathological ones, leading to unbalanced datasets which 
may originate biased predictions.

In contrast to conventional diagnostic and prognostic 
models, and similarly to ML, DL does not assume linear 
relationship among variables, leading to a better patient-
level therapy treatment decisions. In some clinical trials, 
DL provided performance comparable to those of sta-
tistical linear models as logistic regression, suggesting 
how, depending on the type of data, a different analysis 
might be more suitable. Specifically, future studies could 
facilitate the integration of ML/DL models with statistical 
classifiers.

In addition, DL application in healthcare poses more 
challenges because data are often highly heterogene-
ous, noisy, and incomplete, and the number of available 
patients is usually limited, thus complicating the proper 
convergence of the DL algorithm and reliability of the 
results (i.e., garbage in results in garbage out). Moreo-
ver, the repeatability of the performance obtained with 
supervised models trained on specific datasets (i.e., 

monocentric, or obtained using the same equipment) onto 
data collected within other centers as well as with other 
equipment, or with different underlying patient factors 
(i.e., gender distribution, ethnicity, morbidities), needs 
to be further validated to avoid introducing biases in the 
results. Therefore, a standardized framework on how to 
perform and validate clinical studies would be required 
before implementation of DL into routine clinical use. 
Indeed, the impact of DL on the clinical decision-making 
process, on resources utilization and on value-based prac-
tice, has not been yet properly investigated. Moreover, 
the current literature reports an unbalance distribution of 
studies between ML and DL, with a limited number of DL 
studies, probably due to the limited availability of data. 
Indeed, in [77], the authors suggest that a substantially 
investment will be required in order to create high-quality 
annotated datasets for the development and the success 
of DL methods.

Another main limitation of DL models is inherent to 
the limited explicability of their results in a way that cli-
nicians could understand. Opposite to ML, as the features 
are determined by the network itself, without a relation 
with possible features that a human could extract (i.e., 
mean, standard deviation, common parameters in the tem-
poral or in the frequency domain), often it is not possible 
to understand which parameters and why have contrib-
uted to the generated output. This is particularly criti-
cal for decision support systems, where there is the need 
for the physician to comprehend and evaluate the source 
of the suggested action before taking the final decision 
and associated responsibility. Also in other fields, ethi-
cal issues have been raised concerning poor explicability, 
possibly leading to severe consequences [78, 79]. This 
condition of non-interpretability collides against the 
concept of evidence-based medicine, the cornerstone for 
clinical applications of DL, thus potentially limiting its 
utilization into clinical practice [80]. Possible solutions 
to cope with this limitation consist in the introduction of 
attention-base explainable DL methods, where the net-
work is forced to learn on pre-defined attention maps on 
the original data, that can be visualized to better under-
stand the origin of its results.

An additional aspect that could limit diffusion of DL 
in the medical field concerns the need for clinical assess-
ment related to the software certification as medical 
device, as currently regulated by the EU legislation [81]. 
In fact, such software must undergo approval by notified 
bodies before being introduced in clinical practice, and 
proper accuracy and increased benefit over risk need to 
be demonstrated a priori. Additionally, as these networks 
are currently evolving based on the constant availability 
of data, the problem of re-certification over time has been 
posed to verify the same longitudinal performance.
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Conclusion

It is evident from the literature that DL algorithms have 
witnessed increasing applications in different aspects of 
the management of HF patients, with the aim to improve 
efficiency in diagnosis and prognosis. These methods have 
already demonstrated to overcome the performance of con-
ventional approaches in different clinical setting, being 
able to integrate different data sources in order to improve 
diagnosis and prediction, potentially leading to tailored 
treatments.

The results described in this review have illustrated the 
potential capabilities of DL methods to improve prediction 
relevant to mortality and hospital readmission, highlighting 
how these promising tools could introduce substantial positive 
and significant changes in the clinical workflow in the future 
treatment of HF in the near future. For example, the increasing 
availability of smart analysis in EHRs based on DL appli-
cations will reduce the need for scoring systems, enabling 
personalized treatment for HF patients. DL analytical skills 
have been shown to be superior to those of expert clinicians, 
since humans can handle only a limited number of cogni-
tive information (i.e., variables in structure data) at once [82, 
83], thus facilitating clinical support for early HF risk iden-
tification. With a rapidly growing scenario in cardiovascular 
medicine, DL has the potential of paving the way towards a 
new generation of predictive methods in healthcare that could 
automatize essential processes involved in treatment planning, 
helping in identifying hidden information in complex and het-
erogeneous datasets to effectively support clinicians in their 
daily activities. In this scenario, DL has showed potential to 
classify HF patients into novel phenotypes who might ben-
efit of specific treatments, as well as for early diagnosis of 
HF to improve its prognosis. The integration of different data 
sources including EHRs, genomics, and remote patient moni-
toring could provide a better description on the HF patient 
individual status, which might support clinicians regarding 
appropriate intervention and therapy, hospital discharge, and 
hospital re-admissions. However, for DL to become part of 
clinical practice, several ethical and regulatory issues need to 
be properly addressed and solved. These challenges introduce 
both new opportunities and the need of further research to 
provide more evidence about the effective benefit of these 
algorithms in being translated into better quality of care for 
patients, improved outcomes, and lower healthcare costs.
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