Skip to main content
Log in

Computational Modeling of Piezoelectric Foams

  • Published:
JOM Aims and scope Submit manuscript

Piezoelectric materials, by virtue of their unique electromechanical characteristics, have been recognized for their potential utility in many applications as sensors and actuators. However, the sensing or actuating functionality of monolithic piezoelectric materials is generally limited. The composite approach to piezoelectric materials provides a unique opportunity to access a new design space with optimal mechanical and coupled characteristics. The properties of monolithic piezoelectric materials can be enhanced via the additive approach by adding two or more constituents to create several types of piezoelectric composites or via the subtractive approach by introducing controlled porosity in the matrix materials to create porous piezoelectric materials. Such porous piezoelectrics can be tailored to demonstrate improved signal-to-noise ratio, impedance matching, and sensitivity, and thus, they can be optimized for applications such as hydrophone devices. This article captures key results from the recent developments in the field of computational modeling of novel piezoelectric foam structures. It is demonstrated that the fundamental elastic, dielectric, and piezoelectric properties of piezoelectric foam are strongly dependent on the internal structure of the foams and the material volume fraction. The highest piezoelectric coupling constants and the highest acoustic impedance are obtained in the [3-3] interconnect-free piezoelectric foam structures, while the corresponding figures of merit for the [3-1] type long-porous structure are marginally higher. Among the [3-3] type foam structures, the sparsely-packed foam structures (with longer and thicker interconnects) display higher coupling constants and acoustic impedance as compared to closepacked foam structures (with shorter and thinner interconnects). The piezoelectric charge coefficients (d h), the hydrostatic voltage coefficients (g h), and the hydrostatic figures of merit (d hgh) are observed to be significantly higher for the [3-3] type piezoelectric foam structures as compared to the [3-1] type long-porous materials, and these can be enhanced significantly by modifying the aspect ratio of the porosity in the foam structures as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Gerhard-Multhaupt, IEEE Trans. Dielectr. Electr. Insul. 9, 850 (2002).

    Article  Google Scholar 

  2. C. Galassi, J. Eur. Ceram. Soc. 26, 2951 (2006).

    Article  Google Scholar 

  3. R.E. Newnham, D.P. Skinner, and L.E. Cross, Mater. Res. Bull. 13, 525 (1978).

    Article  Google Scholar 

  4. M.L. Dunn and M. Taya, Int. J. Solids Struct. 30, 161 (1993).

    Article  MATH  Google Scholar 

  5. M.L. Dunn and M. Taya, Proc. R. Soc. Lond. A 443, 265 (1993).

    Article  MATH  Google Scholar 

  6. R. Guinovart-Diaz, J. Bravo-Castillero, R. Rodrigues-Ramos, F.J. Sabina, and R. Martinez-Rosado, Mater. Lett. 48, 93 (2001).

    Article  Google Scholar 

  7. R. Kar-Gupta and T.A. Venkatesh, Acta Mater. 55, 1093 (2007).

    Article  Google Scholar 

  8. G. Hayward and J.A. Hossack, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 618 (1991).

    Article  Google Scholar 

  9. H.E. Pettermann and S. Suresh, Int. J. Solids Struct. 37, 5447 (2000).

    Article  MATH  Google Scholar 

  10. R. Kar-Gupta and T.A. Venkatesh, Acta Mater. 55, 1275 (2007).

    Article  Google Scholar 

  11. C. Poizat and M. Sester, Comput. Mater. Sci. 16, 89 (1999).

    Article  Google Scholar 

  12. D.P. Skinner, R.E. Newnham, and L.E. Cross, Mater. Res. Bull. 13, 599 (1978).

    Article  Google Scholar 

  13. C. Richard, H.S. Lee, and D. Guyomar, Ultrasonics 42, 417 (2004).

    Article  Google Scholar 

  14. R. Ramesh, D.C. Prasad, T.K. Vinod Kumar, L.A. Gavane, and R.M.R. Vishnubhatla, Ultrasonics 44, 341 (2006).

    Article  Google Scholar 

  15. M.L. Dunn and M.J. Taya, Am. Ceram. Soc. 76, 1697 (1993).

    Article  Google Scholar 

  16. H. Banno, Ceram. Bull. 66, 1332 (1987).

    Google Scholar 

  17. T.E. Gómez Alvarez-Arenas and F.M. Freijo, J. Acoust. Soc. Am. 100, 3104 (1996).

    Article  Google Scholar 

  18. T.E. Gómez Alvarez-Arenas and F.M. Espinosa, Appl. Phys. Lett. 68, 263 (1996).

    Article  Google Scholar 

  19. Y. Mikata, Int. J. Solids Struct. 38, 7045 (2001).

    Article  MATH  Google Scholar 

  20. C.R. Bowen and V.Y. Topolov, Acta Mater. 51, 4965 (2003).

    Article  Google Scholar 

  21. R. Kar-Gupta and T.A. Venkatesh, Acta Mater. 54, 4063 (2006).

    Article  Google Scholar 

  22. R. Kar-Gupta and T.A. Venkatesh, Appl. Phys. Lett. 91, 062904 (2007).

    Article  Google Scholar 

  23. S. Iyer and T.A. Venkatesh, Appl. Phys. Lett. 97, 072904 (2010).

    Article  Google Scholar 

  24. S. Iyer and T.A. Venkatesh, J. Appl. Phys. 110, 034109 (2011).

    Article  Google Scholar 

  25. R. Ramesh, H. Kara, and C.R. Bowen, Ultrasonics 43, 173 (2005).

    Article  Google Scholar 

  26. U. Bast and W. Wersing, Ferroelectrics 94, 229 (1989).

    Article  Google Scholar 

  27. K. Nagata, H. Igarashi, K. Okazaki, and R.C. Bradt, Jpn. J. Appl. Phys. 19, L37 (1980).

    Article  Google Scholar 

  28. K. Hikita, K. Yamada, M. Nishioka, and M. Ono, Ferroelectrics 49, 265 (1983).

    Article  Google Scholar 

  29. R.Y. Ting, Ferroelectrics 65, 11 (1985).

    Article  MathSciNet  Google Scholar 

  30. H. Kara, R. Ramesh, R. Stevens, and C.R. Bowen, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 289 (2003).

    Article  Google Scholar 

  31. C.R. Bowen, A. Perry, A.C.F. Lewis, and H. Kara, J. Eur. Ceram. Soc. 24, 541 (2004).

    Article  Google Scholar 

  32. Y.C. Chen and S. Wu, Ceram. Int. 30, 69 (2004).

    Article  Google Scholar 

  33. D. Piazza, C. Capiani, and C. Galassi, J. Eur. Ceram. Soc. 25, 3075 (2005).

    Article  Google Scholar 

  34. H.L. Zhang, L. Jing-Feng, and Z. Bo-Ping, Acta Mater. 55, 171 (2007).

    Article  Google Scholar 

  35. K. Bounmchedda, M. Hamadi, and G. Fantozzi, J. Eur. Ceram. Soc. 27, 4169 (2007).

    Article  Google Scholar 

  36. K. Li, X.-L. Gao, and G. Subhash, J. Mech. Phys. Solids 54, 783 (2006).

    Article  MATH  Google Scholar 

  37. L.J. Gibson and M.F. Ashby, Cellular Solids: Structures and Properties (Cambridge, U.K.: Cambridge University Press, 1997).

    Google Scholar 

  38. R.M. Christensen, J. Mech. Phys. Solids 34, 563 (1986).

    Article  Google Scholar 

  39. W.E. Warren and A.M. Kraynik, J. Appl. Mech. 55, 341 (1988).

    Article  Google Scholar 

  40. W.E. Warren and A.M. Kraynik, J. Appl. Mech. 64, 787 (1997).

    Article  MATH  Google Scholar 

  41. K. Li, X.-L. Gao, and A.K. Roy, Compos. B Eng. 36, 249 (2005).

    Article  Google Scholar 

  42. H.X. Zhu, J.F. Knott, and N.J. Mills, J. Mech. Phys. Solids 45, 319 (1997).

    Article  Google Scholar 

  43. H.X. Zhu, N.J. Mills, and J.F. Knott, J. Mech. Phys. Solids 45, 1875 (1997).

    Article  MATH  Google Scholar 

  44. M.S. Roy, L.J. Ghisn, and B.A. Lerch, Int. J. Solids Struct. 45, 1754 (2008).

    Article  MATH  Google Scholar 

  45. M.J. Silva, W.C. Hayes, and L.J. Gibson, Int. J. Mech. Sci. 37, 1161 (1995).

    Article  MATH  Google Scholar 

  46. M.W.D. Van der Burg, V. Shulmeister, E. Van der Geissen, and R. Marissen, J. Cell. Plast. 33, 31 (1997).

    Google Scholar 

  47. H.X. Zhu, J.R. Hobdell, and A.H. Windle, Acta Mater. 48, 4893 (2000).

    Article  Google Scholar 

  48. A.P. Robert and E.J. Garboczi, J. Mech. Phys. Solids 50, 33 (2002).

    Article  Google Scholar 

  49. S. Sihn and A.K. Roy, J. Mech. Phys. Solids 52, 167 (2004).

    Article  MATH  Google Scholar 

  50. S.M. Oppenheimer and D.C. Dunand, Acta Mater. 55, 3825 (2007).

    Article  Google Scholar 

  51. S.A. Meguid, S.S. Cheon, and N. El-Abbasi, Finite Elem. Anal. Des. 38, 631 (2002).

    Article  MATH  Google Scholar 

  52. S. Demiray, W. Becker, and J. Hohe, Int. J. Solids Struct. 44, 2093 (2007).

    Article  MATH  Google Scholar 

  53. K.S. Challagulla and T.A. Venkatesh, Acta Mater. 60, 2111 (2012).

    Article  Google Scholar 

  54. P.W. Bosse, K.S. Challagulla, and T.A. Venkatesh, Acta Mater. 60, 6464 (2012).

    Google Scholar 

  55. R. Kar-Gupta and T.A. Venkatesh, Acta Mater. 56, 3810 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Venkatesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Challagulla, K.S., Venkatesh, T.A. Computational Modeling of Piezoelectric Foams. JOM 65, 256–266 (2013). https://doi.org/10.1007/s11837-012-0515-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0515-x

Keywords

Navigation