Skip to main content
Log in

Simulation of Fracture Nucleation in Cross-Linked Polymer Networks

  • Published:
JOM Aims and scope Submit manuscript

Abstract

A novel atomistic simulation method is developed whereby polymer systems can undergo strain-rate-controlled deformation while bond scission is enabled. The aim is to provide insight into the nanoscale origins of fracture. Various highly cross-linked epoxy systems including various resin chain lengths and levels of nonreactive dilution were examined. Consistent with the results of physical experiments, cured resin strength increased and ductility decreased with increasing cross-link density. An analysis of dihedral angle activity shows the locations in the molecular network that are most absorptive of mechanical energy. Bond scission occurred principally at cross-link sites as well as between phenyl rings in the bisphenol moiety. Scissions typically occurred well after yield and were accompanied by steady increases in void size and dihedral angle motion between bisphenol moieties and at cross-link sites. The methods developed here could be more broadly applied to explore and compare the atomistic nature of deformation for various polymers such that mechanical and fracture properties could be tuned in a rational way. This method and its results could become part of a solution system that spans multiple length and time scales and that could more completely represent such mechanical events as fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  1. M.D. Glad and E.J. Kramer, J. Mater. Sci. 26, 2273 (1991).

    Article  Google Scholar 

  2. A.E. Mayr, W.D. Cook, and G.H. Edward, Polymer 16, 3719 (1998).

    Article  Google Scholar 

  3. W.D. Cook, A.E. Mayr, and G.H. Edward, Polymer 16, 3725 (1998).

    Article  Google Scholar 

  4. W.L. Wu and B.J. Bauer, Macromolecules 21, 457 (1988).

    Article  Google Scholar 

  5. S.N. Zhurkov, V.S. Kuksenko, and A.I. Slutsker, Sov. Phys. Solid State 11, 296 (1969).

    Google Scholar 

  6. S.N. Zhurkov, V.I. Vettegren, V.E. Korsukov, and I.I. Novak, Sov. Phys. Solid State 11, 290 (1969).

    Google Scholar 

  7. S.N. Zhurkov and V.E. Korsukov, J. Polym. Sci. Polym. Phys. Ed. 12, 385 (1974).

    Article  Google Scholar 

  8. J. Somha, Prog. Polym. Sci. 14, 451 (1989).

    Article  Google Scholar 

  9. M. Debowska, L. Kurzeja, A. Baranowski, K. Hennek, K. Jerie, and J. Rudzinska-Girulska, J. Radioanal. Nucl. Chem. 210, 485 (1996).

    Article  Google Scholar 

  10. Y.C. Jean, H. Cao, G.H. Dai, R. Suzuki, T. Ohdaira, and Y. Kobayashi, Appl. Surf. Sci. 116, 251 (1997).

    Article  Google Scholar 

  11. G. Dlubeck, J. Pointeck, M.Q. Shaikh, E.M. Hassan, and R. Krause-Rehberg, Phys. Rev. E 75, 1–021802 (2007).

    Google Scholar 

  12. T. Scherzer, J. Polym. Sci. B 34, 459 (1996).

    Article  Google Scholar 

  13. F. Bueche, J. Appl. Phys. 29, 1231 (1958).

    Article  MATH  Google Scholar 

  14. S.N. Zhurkov and T.P. Sanfirova, Dokl. Akad. Nauk SSSR 101, 237 (1955).

    Google Scholar 

  15. S.N. Zhurkov and E.E. Tomashevsky, Physical Basis of Yield and Fracture, ed. A.C. Stickland (London, U.K.: Institute of Physics, 1966), p. 200.

  16. H.H. Kausch and C.C. Hsiao, J. Appl. Phys. 39, 4915 (1968).

    Article  Google Scholar 

  17. H.H. Kausch, Kolloid-Z. Z. Polymere 236, 48 (1970).

    Article  Google Scholar 

  18. S.N. Zhurkov, V.A. Zakrevskii, V.E. Korsukov, and V.S. Kuksenko, Sov. Phys. Solid State 13, 1680 (1972).

    Google Scholar 

  19. V.A. Zakrevskii and V.Y. Korsukov, Polym. Sci. USSR 14, 1064 (1972).

    Article  Google Scholar 

  20. Y.Y. Gotlib, A.V. Dobrodumov, A.M. El’yashevich, and Y.E. Svetlov, Sov. Phys. Solid State 15, 555 (1973).

    Google Scholar 

  21. D.S. Dugdale, J. Mech. Phys. Solids 8, 100 (1960).

    Article  Google Scholar 

  22. N. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity (Gronigen: Noordhoff, 1953), p. 340.

    MATH  Google Scholar 

  23. A.R. Rosenfield, P.K. Dai, and G.T. Hahn, Crack Extension and Propagation under Plane Stress (Washington, DC: NAS-NRC, 1966).

    Google Scholar 

  24. F.M. Capaldi, M.C. Boyce, and G.C. Rutledge, Polymer 45, 1391 (2004).

    Article  Google Scholar 

  25. A.P. Awasthi, D.C. Lagoudas, and D.C. Hammerand, Model. Simul. Mater. Sci. Eng. 17, 1 (2009).

    Article  Google Scholar 

  26. M. Deng, V.B. Tan, and T.E. Tay, Polymer 45, 6399–6407 (2004).

    Article  Google Scholar 

  27. M.J. Buehler and H. Gao, Dynamic Fracture Mechanics, ed. A. Shukla (Hackensack, NJ: World Scientific, 2006),

    Google Scholar 

  28. S. Keten and M.J. Buehler, Comput. Methods Appl. Mech. 197, 3203 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Fish, M.A. Nuggehally, M.S. Shephard, C.R. Picu, S. Badia, M.L. Parks, and M. Gunzburger, Comput. Meth. Appl. Mech. Eng. 196, 4548 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  30. M.R. Nyden, S.I. Stoliarov, P.R. Westmoreland, Z.X. Guo, and C. Jee, Mater. Sci. Eng. A A365, 114 (2004).

    Google Scholar 

  31. C. Jee, Z. Guo, and M. Nyden, Mater. Sci. Eng. 1–2, 122 (2004).

    Google Scholar 

  32. D. Sen, C. Thaulow, S.V. Schieffer, A. Cohen, and M.J. Buehler, Phys. Rev. Lett. PRL104: 235502-1 (2010).

    Google Scholar 

  33. T.E. Dirama, V. Varshney, K.L. Anderson, J.A. Shumaker, and J.A. Johnson, Mech. Time-Depend. Mater. 12, 205 (2008).

    Article  Google Scholar 

  34. M.J. Stevens, Macromolecules 34, 1411 (2001).

    Article  Google Scholar 

  35. D. Rottach, J.G. Curro, J. Budzien, G. Grest, C. Svaneborg, and R. Everaers, Macromolecules 40, 131 (2007).

    Article  Google Scholar 

  36. D.N. Theodorou and U.W. Suter, Macromolecules 19, 139 (1986).

    Article  Google Scholar 

  37. D. Rigby and L. Subramanian, Contract Research Report for Advanced Composite Polymers Project (San Diego, CA: Accelrys, Inc., 2009).

    Google Scholar 

  38. H. Sun, J. Phys. Chem. B 102, 7338 (1998).

    Article  Google Scholar 

  39. Y. Won, J. Galy, J. Pascault, and J. Verdu, Polymer 32, 79 (1991).

    Article  Google Scholar 

  40. J.P. Pascault, H. Sautereau, J. Verdu, and R. Williams, Thermosetting Polymers (New York: Marcel Dekker, 2002).

    Book  Google Scholar 

  41. S.H. Goodman, Handbook of Thermosetting Plastics, ed. S.H. Goodman (Park Ridge, NJ: Noyes, 1986), p. 170.

    Google Scholar 

  42. V. Varshney, S.S. Patnaik, A. Roy, and B.L. Farmer, Macromolecules 41, 6837 (2008).

    Article  Google Scholar 

  43. N. Soni, P. Lin, and R. Khare, Polymer 53, 1015 (2012).

    Article  Google Scholar 

  44. M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).

    Article  Google Scholar 

  45. H. Eyring, J. Chem. Phys. 4, 283 (1936).

    Article  Google Scholar 

  46. C. Bauwens-Crowet, J.A. Bauwens, and G. Homes, J. Polym. Sci. 7, 735 (1969).

    Google Scholar 

  47. J.S. Foot, R.W. Truss, I.M. Ward, and R.A. Duckett, J. Mater. Sci. 22, 1437 (1987).

    Article  Google Scholar 

  48. S. Zhurkov, V. Zakrevskyi, V. Korsukov, and V. Kuksenko, J. Polym. Sci. 10, 1509 (1972).

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Low Density Materials program of the U.S. Air Force Office of Scientific Research task number 11RX06COR and Air Force Materials and Manufacturing Directorate contract number FA8650-07-D-5800. The facilities of the U.S. Air Force Research Laboratory—Department of Defense Supercomputing Resource Center were also utilized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Moller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moller, J.C., Barr, S.A., Schultz, E.J. et al. Simulation of Fracture Nucleation in Cross-Linked Polymer Networks. JOM 65, 147–167 (2013). https://doi.org/10.1007/s11837-012-0511-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0511-1

Keywords

Navigation