Skip to main content
Log in

Hydrogen Effervescence from Aluminum Alloy Melts

  • Published:
JOM Aims and scope Submit manuscript

Abstract

With expansion of integrated computational materials engineering, new mathematical models are required for the assessment of processes that traditionally were manually monitored on factory production floors. The Richards logistic function is used to describe the total amount of porosity in an as-cast aluminum alloy sample after treatment under near vacuum and atmospheric pressures. The acquired function constants were correlated to the different process parameters during solidification. It is found that the Richards logistic function describes the best formation of porosity in aluminum alloy melts. The maximum porosity (M P) and lowest porosity level (L P) constants are directly related to the highest and lowest porosity levels in the analyzed samples, while the rate (r) defines the increase of porosity with respect to an increase in dissolved hydrogen between the threshold and mass transfer limits. The Richards logistic function can be used instead of traditional low-order mathematical equations to predict threshold limit and amount of porosity in solidified aluminum alloys by assessing the hydrogen concentration in aluminum alloy melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Liao, W. Song, Q. Wang, L. Zhao, and R. Fan, JOM 64, 22 (2012).

    Article  Google Scholar 

  2. R. Wu, Z. Qu, D. Shu, J. Wang, and B. Sun, JOM 59 (1), 62 (2007).

    Article  Google Scholar 

  3. D. Larsen, JOM 49 (8), 27 (1997).

    Article  Google Scholar 

  4. P. Anyalebechi, Scripta Metall. Mater. 34, 1209 (1996).

    Google Scholar 

  5. W. laOrchan, M. Mulazimoglu, X. Chen, and J. Gruzleski, AFS Trans. 104, 565 (1995).

    Google Scholar 

  6. X. Chen, F. Klinkenberg, S. Engler, L. Heusler, and W. Schneider, JOM 46 (8), 34 (1994).

    Article  Google Scholar 

  7. P. Hess, Light Met. 2, 837 (1974).

    Google Scholar 

  8. P. Crossley and L. Mondolfo, Mod. Casting 49, 53 (1966).

    Google Scholar 

  9. E. Whittenberger and F. Rhines, JOM 4, 409 (1952).

    Google Scholar 

  10. M. Krupinski, L. Dobrzanski, J. Sokolowski, W. Kasprzak, and G. Byczynski, Mater. Sci. Forum 539–543, 339 (2007).

    Article  Google Scholar 

  11. A. Mitrasinovic (Master Thesis, University of Windsor, 2004).

  12. A. Mitrasinovic, F.C. Robles Hernandez, M. Djurdjevic, and J. Sokolowski, Mater. Sci. Eng. A 428, 41 (2006).

    Article  Google Scholar 

  13. F. Richards and J. Exper, Botany 10, 290 (1959).

    Google Scholar 

  14. C. Ransley and H. Neufeld, J. Inst. Met. 74, 228 (1948).

    Google Scholar 

  15. B. Deoras and V. Kondic, Foundry Trade J. 5, 361 (1956).

    Google Scholar 

  16. J.P. Anson and J.E. Gruzleski, AFS Trans. 107, 456 (1999).

    Google Scholar 

  17. A. Kirstine Frie, V. Potelov, M. Kingsley, and T. HaugTrends, ICES J. Mar. Sci. 60, 1018 (2003).

    Article  Google Scholar 

  18. J. Yang, J. Zhang, Z. Wang, Q. Zhu, and W. Wang, Am. Soc. Plant Biol. 127, 315 (2005).

    Google Scholar 

  19. J. Dolezal, H. Ishii, V. Vetrova, A. Sumida, and T. Hara, Ann. Bot. 94, 333 (2004).

    Article  Google Scholar 

  20. R. Wu, Z. Wang, W. Zhao, and J. Cheverud, Genetics 168, 2383 (2004).

    Article  Google Scholar 

  21. A. Mitrašinović, R. D’Souza, and T. Utigard, J. Mater. Process. Tech. 212, 78 (2012).

    Article  Google Scholar 

  22. A. Mitrašinović, R. D'Souza, T. Utigard and J.Z. Wen, Miner. Process. Extract. Metall. Rev. (2012). doi:10.1080/08827508.2012.684191.

    Google Scholar 

  23. S. Sand, D. von Rosen, K. Victorin, and A.F. Filipsson, Toxicol. Sci. 90, 241 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar M. Mitrašinović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitrašinović, A.M., D’Souza, R. Hydrogen Effervescence from Aluminum Alloy Melts. JOM 64, 1448–1452 (2012). https://doi.org/10.1007/s11837-012-0472-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-012-0472-4

Keywords

Navigation