Skip to main content
Log in

Entomovectoring in plant protection

  • Review Article
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

This paper gives an overview on the unique concept of the entomovector technology to employ pollinating insects, including honey bees and bumble bees in the context of biological control of insect pests and diseases. After a brief introductory description, the multifaceted aspects of this intriguing technology are highlighted by describing the most significant results and achievements of research groups around the world concerning: (1) the importance of vector selection, as this determines the transport efficacy of biocontrol agents into the crop and is influenced by the vector–plant interactions, (2) the different potential biocontrol agents used so far, (3) the significance of the diluent and formulation for an increased vector loading and transport, (4) the different dispenser types developed over the past 20 years, and (5) the safety of this technology to the environment and humans. For all these interactions, we identify in a critical manner the limitations and the successes obtained so far. The needs for further research are also discussed to increase the potential of the entomovector technology in practical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abramson CI, Squire J, Sheridan A, Mulder PG (2004) The effect of insecticides considered harmless to honey bees (Apis mellifera): proboscis conditioning studies by using the insect growth regulators tebufenozide and diflubenzuron. Environ Entomol 33:378–388

    Article  CAS  Google Scholar 

  • Albano S, Chagon M, de Oliveira D, Houle E, Thibodeau PO, Mexia A (2009) Effectiveness of Apis mellifera and Bombus impatiens as dispensers of the Rootshield® biofungicide (Trichoderma harzianum, strain T-22) in a strawberry crop. Hell Plant Prot J 2:57–66

    Google Scholar 

  • Alexandrova M, Bazzi C, Lameri P (2002) Bacillus subtilis strain BS-F3: colonisation of pear organs and its action as a biocontrol agent. Acta Hort 590:291–297

    Google Scholar 

  • Al-mazra’awi MS, Shipp JL, Broadbent AB, Kevan PG (2006a) Dissemination of Beauveria bassiana by honey bees (Hymenoptera: Apidae) for control tarnished plant bug (Hemiptera: Miridae) on canola. Biol Control 35:1569–1577

    Google Scholar 

  • Al-mazra’awi MS, Shipp JL, Broadbent AB, Kevan PG (2006b) Biological control of Lygus lineolaris (Hemiptera: Miridae) and Frankiniella occidentalis (Thysanoptera: Thripidae) by Bombus impatiens (Hymenoptera: Apidae) vectored Beauveria bassiana in greenhouse sweet pepper. Biol Control 37:89–97

    Article  Google Scholar 

  • Al-mazra’awi MS, Kevan PG, Shipp L (2007) Development of Beauveria bassiana dry formulation for vectoring by honey bees Apis mellifera (Hymenoptera: Apidae) to the flowers of crops for pest control. Biocontrol Sci Technol 17:733–741

    Article  Google Scholar 

  • Bardas GA, Myresiotis CK, Karaoglanidis GS (2008) Stability and fitness of anilinopyrimidine-resistant strains of Botrytis cinerea. Phytopathol 98:443–450

    Article  CAS  Google Scholar 

  • Bilu A, Dag A, Elad Y, Shafir S (2004) Honey bee dispersal of biocontrol agents: an evaluation of dispensing devices. Biocontrol Sci Technol 14:607–617

    Article  Google Scholar 

  • Bosch J, Kemp WP (2002) Developing and establishing bee species as crop pollinators: the example of Osmia spp. (Hymenoptera: Megachilidae) and fruit trees. Bull Entomol Res 92:3–16

    PubMed  CAS  Google Scholar 

  • Brimmer TA, Boland GJ (2003) A review of the non-target effects of fungi used to biologically control plant diseases. Agri Ecos Environ 100:3–16

    Article  Google Scholar 

  • Butt TM, Carreck NL, Ibrahim L, Williams IH (1998) Honey bee-mediated infection of pollen beetle (Meligethes aeneus Fab.) by the insect-pathogenic fungus, Metarhizium anisopliae. Biocontrol Sci Technol 8:533–538

    Article  Google Scholar 

  • Card SD, Pearson MN, Clover GRG (2007) Plant pathogens transmitted by pollen. Austr Plant Pathol 36:455–461

    Article  Google Scholar 

  • Carreck NL, Butt TM, Clark SJ, Ibrahim L, Isger EA, Pell JK, Williams IH (2007) Honey bees can disseminate a microbial control agent to more than one inflorescence pest of oilseed rape. Biocontrol Sci Technol 17:179–191

    Article  Google Scholar 

  • Cota LV, Maffia LA, Mizubuti ESC, Macedo PEF (2009) Biological control by Clonostachys rosea as a key component in the integrated management of strawberry gray mold. Biol Control 50:222–230

    Article  Google Scholar 

  • Cribb DM, Hand DW (1993) A comparative study of the effects of using the honeybee as a pollinating agent of glasshouse tomato. J Hortic Sci 68:79–88

    Google Scholar 

  • Dag A, Weinbaum SA, Thorp R, Eiskowitch D (2000) Evaluation of pollen dispensers (‘inserts’) effect on fruit set and yield in almond. J Apic Res 39:117–123

    Google Scholar 

  • Decourtye A, Lacassie E, Pham-Delegue MH (2003) Learning performances of honeybees (Apis mellifera L.) are differentially affected by imidacloprid according to the season. Pest Manag Sci 59:269–278

    Article  PubMed  CAS  Google Scholar 

  • Decourtye A, Armengaud C, Renou M et al (2004a) Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.). Pestic Biochem Physiol 78:83–92

    Article  CAS  Google Scholar 

  • Decourtye A, Devillers J, Cluzeau S et al (2004b) Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions. Ecotoxicol Environ Saf 57:410–419

    Article  PubMed  CAS  Google Scholar 

  • Dedej S, Delaplane KS, Scherm H (2004) Effectiveness of honey bees in delivering the biocontrol agent Bacillus subtilis to blueberry flowers to suppress mummy berry disease. Biol Control 31:422–427

    Article  Google Scholar 

  • Dedryver CA, Le Ralec A, Fabre F (2010) The conflicting relationships between aphids and men: a review of aphid damage and control strategies. C R Biol 333:539–553

    Article  PubMed  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  PubMed  CAS  Google Scholar 

  • Dianez F, Santos M, Blanco R, Tello JC (2002) Fungicide resistance in Botrytis cinerea isolates from strawberry crops in Huelva (southwestern Spain). Phytoparasitica 30:529–534

    Article  CAS  Google Scholar 

  • Droby S, Wisniewski M, Macarisin D, Wilson C (2009) Twenty years of posthavest biocontrol research: is it time for a new paradigm? Postharv Biol Technol 52:137–145

    Article  Google Scholar 

  • El Hassani AK, Dacher M, Gauthier M, Armengaud C (2005) Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera). Pharmacol Biochem Behav 82:30–39

    Article  PubMed  CAS  Google Scholar 

  • Elad Y, Freeman S (2002) Biological control of fungal plant pathogens. In: Kempken F (ed) The Mycota, a comprehensive treatise on fungi as experimental systems for basic and applied research. Springer, Heidelberg, Germany

    Google Scholar 

  • Elad Y, Zimand G, Zaqs Y, Zuriel S, Chet I (1993) Use of Trichoderma harzianum in combination or alternation with fungicides to control cucumber grey mould (Botrytis cinerea) under commercial greenhouse conditions. Plant Pathol 42:324–332

    Article  CAS  Google Scholar 

  • Elad Y, Kirshner B, Sztejnberg A (1998) Management of powdery mildew and gray mold of cucumber by Trichoderma harzianum T39 and Ampelomyces quisqualis AQ10. Biocontrol 43:241–251

    Article  Google Scholar 

  • Errampalli D, Brubacher NR (2006) Biological and integrated control of postharvest blue mold (Penicillium expansum) of apples by Pseudomonas syringae and cyprodinil. Biol Control 36:49–56

    Article  CAS  Google Scholar 

  • Escande AR, Laich FS, Pedraza MV (2002) Field testing of honeybee-dispersed Trichoderma spp. to manage sunflower head rot (Sclerotinia sclerotiorum). Plant Pathol 51:346–351

    Article  Google Scholar 

  • Evidente A, Andolfi A, Cimmino A, Ganassi S, Altomare C, Favilla M, De Cristofaro A, Vitagliano S, Sabatini MA (2009) Bisorbicillinoids produced by the fungus Trichoderma citrinoviride affect feeding preference of the aphid schizaphis graminum. J Chem Ecol 35:533–541

    Article  PubMed  CAS  Google Scholar 

  • Farina WM, Gruter C, Acosta L, SMc Cabe (2007) Honeybees learn floral odors while receiving nectar from foragers within the hive. Naturwissensch 94:55–60

    Article  CAS  Google Scholar 

  • Forrest J, Thomson JD (2009) Background complexity affects colour preference in bumblebees. Naturwissensch 96:921–925

    Article  CAS  Google Scholar 

  • Gil M (2010) Reward expectations in honeybees. Commun Integr Biol 3:95–100

    Article  PubMed  Google Scholar 

  • Goulson D (2010) Bumblebees behaviour and ecology. Oxford University Press, New York, p 317

    Google Scholar 

  • Gross HR, Hamm JJ, Carpenter JE (1994) Design and application of a hive-mounted device that uses honey bees (Hymenoptera: Apidae) to disseminate Heliothis nuclear polyhedrosis virus. Biol Control 23:492–501

    Google Scholar 

  • Guerra-Sanz JM (2008) Crop pollination in greenhouses. In: James RR, Pitts-Singer T (eds) Bee pollination in agriculture ecosystems. Oxford University Press, New York

    Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y (2001) Combining biocontrol agents to reduce the variability of biological control. Phytopathol 92:621–622

    Article  Google Scholar 

  • Guetsky R, Elad DSY, Fischer E, Dinoor A (2002) Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Biol Control 92:976–985

    Google Scholar 

  • Guez D, Suchail S, Gauthier M, Maleszka R, Belzunces LP (2001) Contrasting effects of imidacloprid on habituation in 7- and 8-day-old honeybees (Apis mellifera). Neurobiol Learn Mem 76:183–191

    Article  PubMed  CAS  Google Scholar 

  • Hjeljord LG, Stensvand A, Tronsmo A (2000) Effect of temperature and nutrient stress on the capacity of commercial Trichoderma products to control Botrytis cinerea and Mucor piriformis in greenhouse strawberries. Biol Control 19:149–160

    Article  Google Scholar 

  • Hokkanen HMT, Menzler-Hokkanen I (2007) Use of honeybees in the biological control of plant diseases. Entomol Res 37:A62–A63

    Article  Google Scholar 

  • Hokkanen HMT, Menzler-Hokkanen I (2009) Successful use of honey bees for grey mould biocontrol on strawberries and raspberries in Finland. Apidologie 40:659

    Google Scholar 

  • Hokkanen HMT, Zeng QQ, Menzler-Hokkanen I (2004) Assessing the impact of Metarhizium and Beauveria on bumblebees. In: Hokkanen H, Hajek EA (eds) Environmental impacts of microbial insecticides, needs and methods for risk assessment, vol 1. Kluwer Academic Publishers, The Netherlands

    Google Scholar 

  • Hokkanen HMT, Menzler-Hokkanen I, Mustalahti A-M (2011) Honey bees (Apis mellifera) for precision biocontrol of grey mould (Botrytis cinerea) with Gliocladium catenulatum on strawberries and raspberries in Finland. Arthropod-Plant Interact

  • Israel MS, Boland GJ (1993) Influence of formulation on efficacy of honey bees to transmit biological controls for management of Sclerotinia stem rot of canola. Can J Plant Pathol 14:244

    Google Scholar 

  • James RR, Hayes GW, Leland JE (2006) Field trials on the microbial control of varroa with the fungus Metarhizium anisopliae. Am Bee J 146:968–972

    Google Scholar 

  • Johnson KB, Stockwell VO, Mclaughlin RJ (1993a) Effect of antagonistic bacteria on establishment of honey bee-dispersed Erwinia amylovora in pear blossoms and on fire blight control. Phytopathol 83:995–1002

    Article  Google Scholar 

  • Johnson KB, Stockwell VO, Burgett DM, Sugar D, Loper JE (1993b) Dispersal of Erwinia amylovora and Pseudomonas fluorescens by honeybees from hives to apple and pear blossoms. Phytopathol 83:478–484

    Article  Google Scholar 

  • Jones RA (2004) Using epidemiological information to develop effective integrated virus disease management strategies. Virus Res 100:5–30

    Article  PubMed  CAS  Google Scholar 

  • Jyoti JL, Brewer GJ (1999) Honeybees (Hymenoptera: Apidae) as vector of Bacillus thuringiensis for control of branded sunflower moth (Lepidoptera: Tortricidae). Environ Entomol 28:1172–1176

    Google Scholar 

  • Kangha LHB, James RR, Boucias DG (2002) Hirsutella thompsonii and Metarhizium anisopliae as potential microbial control agents of Varroa destructor, a honey bee parasite. J Invertebr Pathol 81:175–184

    Article  Google Scholar 

  • Kangha LHB, Jones WA, Gracia C (2006) Efficacy of strips coated with Metarhizium anisopliae for control of Varroa destructor (Acari: Varroidae) in honey bee colonies in Texas and Florida. Exp Appl Acarol 40:249–258

    Article  Google Scholar 

  • Kapongo JP, Shipp L, Kevan P, Sutton JC (2008a) Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumblebees (Bombus impatiens) for control of insect pests and suppression of grey mould in greenhouse tomato and sweet pepper. Biol Control 46:508–514

    Article  Google Scholar 

  • Kapongo JP, Shipp L, Kevan P (2008b) Optimal concentration of Beauveria bassiana vectored by bumble bees in relation to pest and bee mortality in greenhouse tomato and sweet pepper. Biocontrol 53:797–812

    Article  Google Scholar 

  • Kevan PG, Kapongo J-P, Al-mazra’awi M, Shipp L (2008) Honey bees, bumble bees and biocontrol. In: James RR, Pitts-Singer T (eds) Bee pollination in agriculture ecosystems. Oxford University Press, New York

    Google Scholar 

  • Kovach J, Petzoldt R, Harman GE (2000) Use of honeybees and bumble bees to disseminate Trichoderma harzianum 1295–22 to strawberries for Botrytis control. Biol Control 18:235–242

    Article  Google Scholar 

  • Kretschmer M, Leroch M, Mosbach A, Walker AS, Fillinger S, Mernke D, Schoonbeek HJ, Pradier JM, Leroux P, De Waard MA, Hahn M (2009) Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog 5(12):e1000696. doi:10.1371/journal.ppat.1000696

  • Laloi D, Sandoz JC, Picard-Nizou AL, Marchesi A, Pouvreau A, Tasei JN, Poppy G, Pham-Delegue MH (1999) Olfactory conditioning of the proboscis extension in bumble bees. Entomol Exp Appl 90:123–129

    Article  Google Scholar 

  • Lambin M, Armengaud C, Raymond S (2001) Imidacloprid induced facilitation of the proboscis extension reflex habituation in the honeybee. Arch Insect Biochem Physiol 48:129–134

    Article  PubMed  CAS  Google Scholar 

  • Lunau K, Unseld K, Wolter F (2009) Visual detection of diminutive floral guides in the bumblebee Bombus terrestris and in the honeybee Apis mellifera. J Comp Physiol 195A:1121–1130

    Article  Google Scholar 

  • Maccagnani B, Mocioni M, Gullino ML, Ladurner E (1999) Application of Trichoderma harzianum by using Apis mellifera as a vector for the control of grey mold of strawberry: first results. IOBC Bull 22:161–164

    Google Scholar 

  • Maccagnani B, Mocioni M, Ladurner E, Gullino ML, Maini S (2005) Investigation of hive-mounted devices for the dissemination of microbiological preparations by Bombus terrestris. Bull Insectol 58:3–8

    Google Scholar 

  • Maccagnani BBC, Biondi E, Tesoriero D, Maini S (2006) Potential of Osmia cornuta as a carrier of antagonist bacteria in biological control of fire blight: a comparison with Apis mellifera. Acta Hort (ISHS) 704:379–386

    Google Scholar 

  • Mertley JC, Mackenzie SJ, Legard DE (2002) Timing of fungicide applications for Botrytis cinerea based on development stage of strawberry flowers and fruit. Plant Dis 86:1019–1024

    Article  Google Scholar 

  • Molet M, Chittka L, Raine NE (2009) How floral odours are learned inside the bumblebee (Bombus terrestris) nest? Naturwissensch 96:213–219

    Article  CAS  Google Scholar 

  • Møller K, Kristensen K, Yohalem D, Larsen J (2009) Biological management of gray mold in pot roses by co-inoculation of the biocontrol agent Ulocladium atrum and the mycorrhizal fungus Glomus mosseae. Biol Control 49:120–125

    Article  Google Scholar 

  • Mommaerts V, Sterk G, Smagghe G (2006) Hazards and uptake of chitin synthesis inhibitors in bumblebees Bombus terrestris. Pest Manag Sci 62:752–758

    Article  PubMed  CAS  Google Scholar 

  • Mommaerts V, Platteau G, Boulet J, Sterk G, Smagghe G (2008) Trichoderma-based biological control agents are compatible with the pollinator Bombus terrestris: a laboratory study. Biol Control 46:463–466

    Article  Google Scholar 

  • Mommaerts V, Sterk G, Hofmann L, Smagghe G (2009) A laboratory evaluation to determine the compatibility of microbiological control agents with the pollinator Bombus terrestris. Pest Manag Sci 65:949–955

    Article  PubMed  CAS  Google Scholar 

  • Mommaerts V, Jans K, Smagghe G (2010a) Side effects of commercial Bacillus thuringiensis insecticides on micro-colonies of Bombus terrestris. Pest Manag Sci 66:520–525

    Article  PubMed  CAS  Google Scholar 

  • Mommaerts V, Kurt P, Vandeven J, Jans K, Sterk G, Hoffmann L, Smagghe G (2010b) Development of a new dispenser for microbiological control agents and evaluation of dissemination by bumblebees in greenhouse strawberries. Pest Manag Sci 66:1199–1207

    Article  PubMed  CAS  Google Scholar 

  • Mommaerts V, Reynders S, Boulet J, Besard L, Sterk G, Smagghe G (2010c) Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology 19:207–215

    Article  PubMed  CAS  Google Scholar 

  • Myresiotis CK, Karaoglanidis GS, Tzavella-Monari K (2007) Resistance of Botrytis cinerea isolates from vegetable crops to anilinopyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicarboximide fungicides. Plant Dis 91:407–413

    Article  CAS  Google Scholar 

  • Nallathambi P, Ulmamaheswari C, Thakore BBL, More TA (2009) Post-harvest management of ber (Ziziphus mauritiana Lamk) fruit rot (Alternaria alternate Fr. Keissler) using Trichoderma species, fungicides and their combinations. Crop Prot 28:525–532

    Article  CAS  Google Scholar 

  • Ngugi HK, Scherm H, Lehman JS (2002) Relationship between blueberry flower age, pollination and conidal infection by Monilinia vaccinii-corymbosi. Ecol Popul Biol 92:1104–1109

    CAS  Google Scholar 

  • Nilsson U, Gripwall E (1999) Influence of application technique on the viability of the biological control agents Verticillium lecanii and Stenernema feltiae. Crop Prot 18:53–59

    Article  Google Scholar 

  • Noma T, Strickler K (2000) Effects of Beauveria bassiana on Lygus hesperus (Hemiptera: Miridae) feeding and oviposition. Environ Entomol 29:394–402

    Article  Google Scholar 

  • Osborne JL, Martin AP, Carreck NL, Swain JL, Knight ME, Goulson D, Hale RJ, Sanderson RA (2008) Bumblebee flight distances in relation to the forage landscape. J Anim Ecol 77:401–415

    Article  Google Scholar 

  • Peng G, Sutton JC, Kevan PG (1992) Effectiveness of honeybees for applying the biocontrol agent Gliocladium rosea to strawberry flowers to suppress Botrytis cinerea. Can J Plant Pathol 14:117–129

    Article  Google Scholar 

  • Pettis JS, Kochansky J, Feldlaufer MF (2004) Larval Apis mellifera L. (Hymenoptera: Apidae) mortality after topical application of antibiotics and dusts. J Econ Entomol 97:171–176

    Article  PubMed  CAS  Google Scholar 

  • Pitts-Singer TL (2008) Past and present management of alfalfa bees. In: James RR, Pitts-Singer T (eds) Bee pollination in agriculture ecosystems. Oxford University Press, New York, pp 105–122

    Chapter  Google Scholar 

  • Raine NE, Chittka L (2007) The adaptive significance of sensory bias in a foraging context: floral colour preferences in the bumblebee Bombus terrestris. PLoS ONE 2(6):e556. doi:10.1371/journal.pone.0000556

  • Rands SA, Whitney HM (2008) Floral temperature and optimal foraging: Is heat a feasible floral reward for pollinators? PLoS ONE 3(4):e2007. doi:10.1371/journal.pone.0002007

  • Reynolds DR, Riley JR (2002) Remote-sensing, telemetric and computer-based-technologies for investigating insect movement: a survey of existing and potential techniques. Comput Electron Agric 35:271–307

    Article  Google Scholar 

  • Robinson-Boyer L, Jeger MJ, Xu X-M, Jeffries P (2009) Management of strawberry grey mould using mixtures of biocontrol agents with different mechanisms of action. Biocontrol Sci Technol 19:1051–1065

    Article  Google Scholar 

  • Roldàn-Serrano AS, Guerra-Sanz JM (2005) Reward attractions of zucchini flowers (Cucurbita pepo L.) to bumblebees (Bombus terrestris L.). Europ J Hort Sci 70:23–28

    Google Scholar 

  • Scherm H, Ngugi HK, Savelle AT, Edwards JR (2004) Biological control of infection of blueberry flowers caused by Monilinia vaccinii-corymbosi. Biol Control 29:199–206

    Article  Google Scholar 

  • Sgolastra F, Bosch J, Molowny-Horas R, Maini S, Kemp WP (2010) Effect of temperature regime on diapause intensity in an adult-wintering Hymenopteran with obligate diapause. J Insect Physiol 56:185–194

    Article  PubMed  CAS  Google Scholar 

  • Shafir S, Dag A, Bilu A, Abu-Toamy M, Elad Y (2006) Honeybee dispersal of the biocontrol agent and Trichoderma harzianum T39: effectiveness in suppressing Botrytis cinerea on strawberry under field conditions. Eur J Plant Pathol 116:119–128

    Article  CAS  Google Scholar 

  • Sharma RR, Singh D, Singh R (2009) Biological control of postharvest of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221

    Article  Google Scholar 

  • Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behaviour. Proc Natl Acad Sci USA 98:3898–3903

    Article  PubMed  CAS  Google Scholar 

  • Stout JC, Goulson D (2002) The influence of nectar secretion rates on the responses of bumblebees (Bombus spp.) to previously visited flowers. Behav Ecol Sociobiol 52:239–246

    Article  Google Scholar 

  • Sugar D, Basile SR (2008) Timing and sequence of postharvest fungicide and biocontrol agent applications for control of pear decay. Postharv Biol Technol 49:107–112

    Article  CAS  Google Scholar 

  • Thompson HM, Hunt LV (1999) Extrapolation from honeybees to bumblebees in pesticide risk assessment. Ecotoxicology 8:147–166

    Article  Google Scholar 

  • Thomson SV, Hansen DR, Flint KM, Vandenberg JD (1992) Dissemination of bacteria antagonistic to Erwinia amylovora by honey bees. Plant Dis 76:1052–1056

    Article  Google Scholar 

  • Toda NRT, Song J, Nieh JC (2009) Bumblebees exhibit the memory spacing effect. Naturwissensch 96:1185–1191

    Article  CAS  Google Scholar 

  • van der Steen JJM, Langerak CJ, Van Tongeren CAM, Dik AJ (2003) Aspects of the use of honeybees and bumblebees as vector of antagonistic micro-organisms in plant disease control. Proc Neth Entomol Soc Meeting 15:41–46

    Google Scholar 

  • Vandenberg JD, Shimanuki H (1986) Two commercial preparations of the beta exotoxin of Bacillus thuringiensis influence the mortality of caged adult honeybees Apis mellifera (Hymenoptera: Apidae). Environ Entomol 15:166–169

    CAS  Google Scholar 

  • Vandenbergi JD (1990) Safety of four entomopathogens for caged adult honey bees (Hymenoptera: Apidae). J Econ Entomol 83:755–759

    Google Scholar 

  • Vanneste JL (1996) Honey bees and epiphytic bacteria to control fire blight, a bacterial disease of apple and pear. Biocont News Inform 17:67N–78N

    Google Scholar 

  • Vicens N, Bosch J (2000) Pollinating efficacy of Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae, Apidae) on ‘Red Delicious’ apple. Environ Entomol 29:235–240

    Article  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86

    Article  CAS  Google Scholar 

  • Whitney HM, Dyer A, Chittka L, Rands SA, Glover BJ (2008) The interaction of temperature and sucrose concentration on foraging preferences in bumblebees. Naturwissensch 95:845–850

    Article  CAS  Google Scholar 

  • Williamson B, Tudzynski B, Tudzynski P, Van Kan JAL (2007) Botrytis cinerea: the cause of grey mold disease. Mol Plant Pathol 8:561–580

    Article  PubMed  CAS  Google Scholar 

  • Wilson M, Lindow SE (1993) Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathol 83:117–123

    Article  Google Scholar 

  • Wilson M, Epton HAS, Sigee DC (1992) Interactions between Erwinia herbicola and E. amylovora on the stigma of hawthorn blossoms. Phytopathol 82:914–918

    Article  Google Scholar 

  • Wolf S, Moritz RFA (2008) Foraging distance in Bombus terrestris L. (Hymenoptera: Apidae). Apidologie 39:419–427

    Article  Google Scholar 

  • Wolf TJ, Ellington CP, Begley IS (1999) Foraging costs in bumblebees: field conditions cause large individual differences. Insectes Soc 46:291–295

    Article  Google Scholar 

  • Yu H, Sutton JC (1997) Effectiveness of bumblebees and honeybees for delivering inoculum of Gliocladium roseum to raspberry flowers to control Botrytis cinerea. Biol Control 10:113–122

    Article  Google Scholar 

  • Zhang SW, Bartsch K, Srintvasan MV (1996) Maze learning by honeybees. Neurobiol Learn Mem 66:267–282

    Article  PubMed  CAS  Google Scholar 

  • Zhou T, Northover J, Schneider KE, Lu XW (2002) Interactions between Pseudomonas syringae MA-4 and cyprodinil in the control of blue mold and gray mold of apples. Can J Plant Pathol 24:154–161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Special Research Fund of VUB (Brussels, Belgium), and a PhD fellowship of the Luxembourg Ministry for Culture, Higher Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Veerle Mommaerts or Guy Smagghe.

Additional information

Handling Editors: Sam Cook and Heikki Hokkanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mommaerts, V., Smagghe, G. Entomovectoring in plant protection. Arthropod-Plant Interactions 5, 81–95 (2011). https://doi.org/10.1007/s11829-011-9123-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-011-9123-x

Keywords

Navigation