Skip to main content
Log in

A mathematical description of thermal decomposition and spontaneous ignition of wood slab under a truncated-cone heater

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A mathematical model of thermal decomposition together with the flammability limit is proposed to describe the pyrolysis and spontaneous ignition of wood slab subjected to the radiation from a truncated-cone heater. The prominent physical and chemical phenomena were considered in the model, involving heat transfer in a solid, heat consumed by thermal decomposition reactions, the evaporation of moisture, re-radiation from pore surfaces inside a solid and so on. The numerical solution allows the prediction of in-depth temperature profiles, evolution of volatiles, variation of thermal conductivity, apparent mass loss (solid conversion) and ignition time. The different densities for wood species and effect of moisture content and grain orientation on thermal conductivity are also considered in the model, producing a good prediction of surface temperatures. This gives birth to the reasonable prediction on ignition time of wood by employing fixed surface temperature (400 °C) as ignition criterion. However, the analysis of constituent fractions for the species associated with the multi-components kinetic scheme should be included in the mathematical model to give a more precise prediction on the apparent mass loss of solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Moghtaderi, Fire and Materials, 30, 1 (2006).

    Article  CAS  Google Scholar 

  2. B. Moghtaderi, V. Novozhilov, D. F. Fletcher and J.H. Kent, J. Appl. Fire Sci., 6, 91 (1996/97).

    Google Scholar 

  3. M. L. Janssens, Fire and Materials, 28, 199 (2004).

    Article  CAS  Google Scholar 

  4. C. Di Blasi, Progress in Energy and Combustion Sciences, 34, 47 (2008).

    Article  Google Scholar 

  5. V. Babrauskas, Ignition handbook: Published by Fire Science Publisher (2003).

  6. D. K. Shen, M. X. Fang, Z.Y. Luo and K. F. Cen, Fire Safety J., 42, 210 (2007).

    Article  CAS  Google Scholar 

  7. D. K. Shen, S. Gu, K. H. Luo and A.V. Bridgwater, Energy Fuels, 23, 1081 (2009).

    Article  CAS  Google Scholar 

  8. D. K. Shen, S. Gu, KH. Luo, A.V. Bridgwater and M. X. Fang, Fuel, 88, 1024 (2009).

    Article  CAS  Google Scholar 

  9. A. M. Kanury and P. L. Blackshear, Combustion Sci. Technol., 2, 5 (1970).

    Article  CAS  Google Scholar 

  10. K. O. Davidsson and J. B. C. Pettersson, Fuel, 81, 263 (2002).

    Article  CAS  Google Scholar 

  11. R. Bilbao, J. F. Mastral, J. A. Lana, J. Ceamanos, M. E. Aldea and M. Betran, J. Anal. Appl. Pyrolysis, 62, 63 (2002).

    Article  CAS  Google Scholar 

  12. R. Xiao, D. K. Shen, H.Y. Zhang and M. X. Fang, The thermal decomposition and spontaneous ignition of wood slabs under a truncated-cone heater: Experimental observation in The 34 th International Symposium on Combustion, Warsaw, Poland (2012).

  13. S. S. Alves and J. L. Figueiredo, Chem. Eng. Sci., 44, 2861 (1989).

    Article  CAS  Google Scholar 

  14. K. M. Bryden, K. M. Ragland and C. J. Rutland, Biomass and Bioenergy, 22, 41 (2002).

    Article  CAS  Google Scholar 

  15. Wood Handbook: US Forest Products Laboratory, USDA, Agric. Handbook (1999).

  16. B. Fredlund, A model for heat and mass transfer in timber structures during fire- A theoretical, numerical and experimental study, Institute of science and technology, Department of fire safety engineering, Lund University, Sweden (1988).

    Google Scholar 

  17. K.M. Bryden and M. J. Hagge, Fuel, 82, 1633 (2003).

    Article  CAS  Google Scholar 

  18. K. M. Bryden, Computational modeling of wood combustion, University of Wisconsin-Madison (1998).

  19. G. L. Borman and K.W. Ragland, Combustion engineering, New York, McGraw-Hill (1998).

    Google Scholar 

  20. E. Mikkola and I. S. Wichman, Fire and Materials, 14, 87 (1989).

    Article  CAS  Google Scholar 

  21. H. R. Wesson, J.R. Welker and C.M. Sliepcevich, Combust. Fame, 16, 303 (1971).

    Article  CAS  Google Scholar 

  22. F. Thurner and U. Mann, Industrial and Engineering Chemistry Process Design and Development, 20, 482 (1981).

    Article  CAS  Google Scholar 

  23. C. Di Blasi, Combustion Sci. Technol., 90, 1121 (1993).

    Article  Google Scholar 

  24. W. R. Chan, M. Kelbon and B.B. Krieger, Fuel, 64, 1505 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dekui Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Q., Shen, D., Xiao, R. et al. A mathematical description of thermal decomposition and spontaneous ignition of wood slab under a truncated-cone heater. Korean J. Chem. Eng. 30, 613–619 (2013). https://doi.org/10.1007/s11814-012-0181-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0181-2

Key words

Navigation