Skip to main content
Log in

Mineral behavior of low-temperature lignite ashes under gasification atmosphere

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To investigate the mineral behavior of lignite ashes under gasification conditions, 450 °C Xiaolongtan lignite ash samples (XLT-LTA) treated at different temperatures or pressures under reducing atmosphere (H2/CO2=1: 1, volume ratio) have been examined by means of an SC-444 apparatus, a scanning electron microscope with an energy dispersive X-ray detector (SEM-EDX), and by X-ray diffraction (XRD). The results showed the sulfur content in the XLT-LTA to be much higher than that in ashes prepared at 815 °C, as a result of the release of sulfur dioxide during the oxidization of pyrite. With increasing temperature, the XLT-LTA particles gradually agglomerate and form partially molten surface entities with obvious apertures, and the content of iron and calcium in the congeries or molten parts increases due to the fusion of fine ash particles with the enrichment of iron and the formation of low-temperature eutectics of calcium and iron. An increase of pressure restrains the decomposition of calcite and muscovite, and promotes the formation of iron minerals (e.g., hercynite, cordierite, and sekaninaite) and orthoclase. The content of amorphous material also increases with increasing pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. L. Chadwick, Ind. Eng. Chem. Res., 38, 1159 (1999).

    Article  CAS  Google Scholar 

  2. K. Zhang, C. You and Y. Li, Korean J. Chem. Eng., 29(4), 540 (2012).

    Article  CAS  Google Scholar 

  3. S. A. Benson and J. N. Harb, Energy Fuels, 7, 743 (1993).

    Article  CAS  Google Scholar 

  4. S. A. Benson and P. L. Holm, Ind. Eng. Chem. Prod. Res. Dev., 24, 149 (1985).

    Article  Google Scholar 

  5. C.G. Vassileva and S. V Vassilev, Fuel Process. Technol., 86, 1297 (2005).

    Article  CAS  Google Scholar 

  6. H. Liu, C. Luo, M. Toyota, S. Kato, S. Uemiya, T. Kojima and H. Tominaga, Fuel, 82, 523 (2003).

    Article  CAS  Google Scholar 

  7. M. Grigore, R. Sakurovs, D. French and V. Sahajwalla, Int. J. Coal Geol., 75, 213 (2008).

    Article  CAS  Google Scholar 

  8. J. Bai, W. Li, C. Z. Li, Z. Q. Bai and B. Q. Li, J. Fuel Chem. Technol., 37, 134 (2009).

    Article  CAS  Google Scholar 

  9. F. I. Muhammad, R. U. Muhammad and K. Kusakabe, Energy, 36, 12 (2011).

    Article  Google Scholar 

  10. G. Skodras and G. P. Sakellaropoulo, Fuel Process. Technol., 77–78, 151 (2002).

    Article  Google Scholar 

  11. S. Sun, J. Zhang, X. Hu, P. Qiu, J. Qian and Y. Qin, Korean J. Chem. Eng., 28, 554 (2009).

    Article  Google Scholar 

  12. T. Clemens, D. Gong and S. Pearce, Int. J. Coal Geol., 65, 235 (2006).

    Article  CAS  Google Scholar 

  13. K. Matsuoka, T. Yamashita, K. Kuramoto, K. Suzuki, A. Takaya and A. Tomita, Fuel, 87, 885 (2008).

    Article  CAS  Google Scholar 

  14. R. S. Dahlin, W.W. Peng, M. Nelson, P. Vimalchand and G. H. Liu, Energy Fuels, 20, 2465 (2006).

    Article  CAS  Google Scholar 

  15. R. S. Dahlin, R. J. Dorminery, W.W. Peng, R. F. Leonard and P. Vimalchand, Energy Fuels, 23, 785 (2009).

    Article  CAS  Google Scholar 

  16. B. J. Skrifvars, M. Hupa and M. Hiltunen, Ind. Eng. Chem. Res., 31, 1026 (1992).

    Article  CAS  Google Scholar 

  17. H. J. Park, N.H. Jung and J.M. Lee, Korean J. Chem. Eng., 28, 1791 (2011).

    Article  CAS  Google Scholar 

  18. F. H. Li, J. J. Huang, Y. T. Fang and Y. Wang, Energy Fuels, 25, 273 (2010).

    Article  Google Scholar 

  19. F. H. Li, J. J. Huang, Y. T. Fang and Y. Wang, Fuel, 90, 2377 (2011).

    Article  CAS  Google Scholar 

  20. W. J. Song, L. H. Tang, X.D. Zhu, Y. Q. Wu, Y.Q. Rong, Z.B. Zhu and S. Koyama, Fuel, 88, 297 (2009).

    Article  CAS  Google Scholar 

  21. S. Su, J. H. Pohi, D. Holcombe and J. A. Hart. Fuel, 80, 1351 (2001).

    Article  CAS  Google Scholar 

  22. H. X. Li, Y. Ninomiya, Z. B. Dong and M. X. Zhang. Chinese J. Chem. Eng., 14, 784 (2006).

    Article  CAS  Google Scholar 

  23. J. Bai, W. Li and B. Q. Li, Fuel, 87, 583 (2008).

    Article  CAS  Google Scholar 

  24. C.Y. Li, J.T. Zhao, Y.T. Fang and Y. Wang, Energy Fuels, 23, 5099 (2009).

    Article  CAS  Google Scholar 

  25. J. Tomeczek and H. Palugniok, Fuel, 81, 1251 (2002).

    Article  CAS  Google Scholar 

  26. S.V. Vassilev, K. Kitano, S. Takeda and T. Tsurue, Fuel Process. Technol., 45, 27 (1995).

    Article  CAS  Google Scholar 

  27. J. Yang, B. Xiao and A. R. Boccaccini, Fuel, 88, 1275 (2009).

    Article  CAS  Google Scholar 

  28. J. C. Van Dyk, S. A. Benson, M. L. Laumb and B. Waaders, Fuel, 88, 1057 (2009).

    Article  Google Scholar 

  29. X. J. Wu, Z. X. Zhang, G. L. Piao, X. He, Y. S. Chen, N. Kobayashi, S. Mori and Y. Itaya, Energy Fuels, 23, 2420 (2009).

    Article  CAS  Google Scholar 

  30. H. Atakül, B. Hilmiðlu and E. Ekinci, Fuel Process. Technol., 86, 1369 (2005).

    Article  Google Scholar 

  31. P. Samaras, E. Diamadopoulos and G. P. Sakellaropoulos, Fuel, 75, 1108 (1996).

    Article  CAS  Google Scholar 

  32. S. Srinivasachar, J. J. Helble, A. A. Boni, N. Shah, G. P. Huffman and F. E. Huggins, Prog. Energy Combust. Sci., 16, 293 (1990).

    Article  CAS  Google Scholar 

  33. J. H. Zhou, X. H. Zhao, W. J. Yang, X.Y. Cao, J. Z. Liu and K. F. Cen, Proc. CSEE., 27, 31 (2007).

    Google Scholar 

  34. E. Wiberg, N. Wiberg and A. F. Holleman, Inorganic chemistry, Berlin Academic Press Publications, Germany (2001).

    Google Scholar 

  35. R. H. Matjie, Z. Li, C. R. Ward and F. David, Fuel, 87, 857 (2008).

    Article  CAS  Google Scholar 

  36. V. Marinov, S. P. L. Marinov, L. Lazarov and M. Stefanova, Fuel Process. Technol., 31, 181 (1992).

    Article  CAS  Google Scholar 

  37. A. Kondratiev and E. Jak, Fuel, 80, 1989 (2001).

    Article  CAS  Google Scholar 

  38. C. R. Ward and D. French, Fuel, 85, 2268 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yitian Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F., Huang, J., Fang, Y. et al. Mineral behavior of low-temperature lignite ashes under gasification atmosphere. Korean J. Chem. Eng. 30, 605–612 (2013). https://doi.org/10.1007/s11814-012-0176-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0176-z

Key words

Navigation