Skip to main content
Log in

Characteristic Formulas of Partial Heyting Algebras

  • Published:
Logica Universalis Aims and scope Submit manuscript

Abstract

The goal of this paper is to generalize a notion of characteristic (or Jankov) formula by using finite partial Heyting algebras instead of the finite subdirectly irreducible algebras: with every finite partial Heyting algebra we associate a characteristic formula, and we study the properties of these formulas. We prove that any intermediate logic can be axiomatized by such formulas. We further discuss the correlations between characteristic formulas of finite partial algebras and canonical formulas. Then with every well-connected Heyting algebra we associate a set of characteristic formulas that correspond to each finite relative subalgebra of this algebra. Finally, we demonstrate that in many respects these sets enjoy the same properties as regular characteristic formulas. In the last section we outline an approach how to generalize these obtained results to the broad classes of algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bezhanishvili G.: Varieties of monadic Heyting algebras. I. Studia Logica 61(3), 367–402 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bezhanishvili G., Bezhanishvili N.: An algebraic approach to canonical formulas: intuitionistic case. Rev. Symb. Log. 2(3), 517–549 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bezhanishvili, N.: Lattices of intermediate and cylindric modal logics. PhD thesis, Institute for Logic, Language and Computation University of Amsterdam (2006)

  4. Blok, W.: Varieties of interior algebras. PhD thesis, University of Amsterdam (1976)

  5. Blok W.J., Pigozzi D.: On the structure of varieties with equationally definable principal congruences. III. Algebra Univers. 32(4), 545–608 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blok W.J., Pigozzi D.: On the structure of varieties with equationally definable principal congruences. IV. Algebra Univers 31(1), 1–35 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blok, W.J., van Alten, C.J.: On the finite embeddability property for residuated lattices, pocrims and BCK-algebras. Rep. Math. Logic 34, 159–165 (2000). Algebra & substructural logics (Tatsunokuchi, 1999)

    Google Scholar 

  8. Blok W.J., van Alten C.J.: The finite embeddability property for residuated lattices, pocrims and BCK-algebras. Algebra Univers. 48(3), 253–271 (2002)

    Article  MATH  Google Scholar 

  9. Burmeister, P.: Partial algebras—an introductory survey. In: Algebras and Orders (Montreal, PQ, 1991). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 389, pp. 1–70. Kluwer, Dordrecht (1993)

  10. Burris, S., Sankappanavar, H.P.: A course in universal algebra. In: Graduate Texts in Mathematics, vol. 78. Springer, New York (1981)

  11. Chagrov, A., Zakharyaschev, M.: Modal logic. In: Oxford Logic Guides, vol. 35. The Clarendon Press/Oxford University Press, New York (1997)

  12. Diego, A.: Sur les algèbres de Hilbert. Translated from the Spanish by Luisa Iturrioz. Collection de Logique Mathématique, Sér. A, Fasc. XXI. Gauthier-Villars, Paris (1966)

  13. Fine K.: An ascending chain of S4 logics. Theoria 40(2), 110–116 (1974)

    Article  MathSciNet  Google Scholar 

  14. Galatos N., Jipsen P., Kowalski T., Ono H.: Residuated lattices: an algebraic glimpse at substructural logics. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  15. Grätzer, G.: Universal Algebra, 2nd edn. Springer, New York (2008). With appendices by Grätzer, Bjarni Jónsson, Walter Taylor, Robert W. Quackenbush, Günter H. Wenzel, and Grätzer and W.A. Lampe

  16. Idziak K., Idziak P.M.: Decidability problem for finite Heyting algebras. J. Symbolic Logic 53(3), 729–735 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jankov V.A.: On the relation between deducibility in intuitionistic propositional calculus and finite implicative structures. Dokl. Akad. Nauk SSSR 151, 1293–1294 (1963)

    MathSciNet  Google Scholar 

  18. Jankov V.A.: Conjunctively irresolvable formulae in propositional calculi. Izv. Akad. Nauk SSSR Ser. Mat. 33, 18–38 (1969)

    MathSciNet  MATH  Google Scholar 

  19. de Jongh, D.: Investigations on intuitionistic propositional calculus. PhD thesis, University of Wisconsin (1968)

  20. Köhler P.: Brouwerian semilattices. Trans. Am. Math. Soc. 268(1), 103–126 (1981)

    Article  MATH  Google Scholar 

  21. Mal’cev, A.I.: Algebraic systems. Die Grundlehren der mathematischen Wissenschaften. Band 192, XII. Springer, Berlin-Heidelberg-New York; Akademie-Verlag, Berlin (1973)

  22. McKay C.G.: The decidability of certain intermediate propositional logics. J. Symbolic Logic 33, 258–264 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  23. McKenzie R.: Equational bases and nonmodular lattice varieties. Trans. Am. Math. Soc. 174, 1–43 (1972)

    Article  MathSciNet  Google Scholar 

  24. McKinsey J.C.C., Tarski A.: On closed elements in closure algebras. Ann. Math. 47(2), 122–162 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rasiowa, H.: An algebraic approach to non-classical logics. In: Studies in Logic and the Foundations of Mathematics, vol. 78. North-Holland, Amsterdam (1974)

  26. Skura T.: Refutation calculi for certain intermediate logics. Notre Dame J. Formal Logic 33(4), 552–560 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tomaszewski, E.: On sufficiently rich sets of formulas. PhD thesis, Institute of Philosophy, Jagellonian University, Krakov (2003)

  28. Wroński A.: On cardinality of matrices strongly adequate for the intuitionistic propositional logic. Polish Acad. Sci. Inst. Philos. Sociol. Bull. Sect. Logic 3(1), 34–40 (1974)

    MathSciNet  Google Scholar 

  29. Yang, F. Intuitionistic subframe formulas, NNIL-Formulas and n-universal models. PhD thesis, University of Amsterdam, Amsterdam (2009). ILLC Dissertation Series MoL-2008-12

  30. Zakharyaschev M.: Canonical formulas for K4. I. Basic results. J. Symbolic Logic 57(4), 1377–1402 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zakharyaschev M.: Canonical formulas for K4. II. Cofinal subframe logics. J. Symbolic Logic 61(2), 421–449 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zakharyaschev M.: Canonical formulas for K4. III. The finite model property. J. Symbolic Logic 62(3), 950–975 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zakharyashchev M.V.: On intermediate logics. Dokl. Akad. Nauk SSSR 269(1), 18–22 (1983)

    MathSciNet  Google Scholar 

  34. Zakharyashchev, M.V.: Syntax and semantics of modal logics that contain S4. Algebra i Logika 27(6), 659–689, 736 (1988)

  35. Zakharyashchev, M.V.: Syntax and semantics of superintuitionistic logics. Algebra i Logika 28(4), 402–429, 486–487 (1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Citkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Citkin, A. Characteristic Formulas of Partial Heyting Algebras. Log. Univers. 7, 167–193 (2013). https://doi.org/10.1007/s11787-012-0048-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11787-012-0048-7

Mathematics Subject Classification

Keywords

Navigation