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ABSTRACT

Nitrate is an important component of atmospheric particulate matter and affects air quality, climate,
human health, and the ecosystem. Nitrate was previously considered a permanent sink for nitrogen
oxides (NO,). However, this viewpoint has been challenged in recent years because growing research
evidence has shown the transformation of nitrate into NO, (i.e., renoxification). The photolysis of
nitrate/HNO;, especially in the particulate phase or adsorbed on particles, can be a significant
renoxification process in the atmosphere. The formation and photolysis of nitrate in aerosol not only
change the diurnal variation of NO,, but also provide long-distance transport of NO, in the form of
nitrate, which affects local and regional atmospheric chemistry and air quality. This review
summarizes recent advances in the fundamental understanding of the photolysis of nitrate/HNO;
under various atmospheric conditions, with a focus on mechanisms and key factors affecting the
process. The atmospheric implications are discussed and future research is recommended.
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1 Introduction

Nitrogen oxides (NO, = NO, + NO) are important factors
affecting regional air quality, since they are the crucial
precursors of ozone in the atmosphere and contribute to
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haze and acid rain formation (Finlayson-Pitts and Pitts,
2000; Seinfeld and Pandis, 2016). In the troposphere,
NO, mainly derives from the high-temperature reaction of
N, and O, during natural and anthropogenic combustion
(fossil fuels, biomass, etc.). Other sources include soil
emissions, lightning processes, and so on (Seinfeld and
Pandis, 2016). NO, plays a central role in atmospheric
chemistry. Figure 1 summarizes the atmospheric chemical
processes related to NO,. Because stratospheric ozone
absorbs most of the short-wave ultraviolet, sunlight can
reach the troposphere only with wavelengths greater than
or equal to 290 nm (4 = 290 nm), which prevents
tropospheric photochemical radiation from decomposing
O, directly. Therefore, the photolysis of NO,, which
produces ground state oxygen atoms (O(°P)), becomes
the most important step in the formation of O; in the
near-surface atmosphere. NO, can react with OH radicals
to produce HNO, in the gas phase and can also react with
O, to form NO; and N,O,, which are then hydrolyzed to
form nitric acid or nitrate. The heterogeneous hydrolysis
of NO, on atmospheric particles or outdoor and indoor
surfaces can produce HNO,; and HONO which is the
main precursor for daytime OH radicals in the atmos-
phere (Finlayson-Pitts et al., 2003). Heterogeneous
conversion of NO, to HONO can occur on reducing particu-
late surfaces, which can be enhanced by illumination
on the photosensitive surfaces (George et al., 2005;
Gustafsson et al., 2006; Stemmler et al., 2006; George
et al.,, 2007; Monge et al., 2010; Elena et al., 2014). In
sum, NO, is closely related to the formation of secondary
pollutants such as O,, HONO, OH radical, NO, radical,
and HNOq/nitrate. Therefore, study of the transformation

of NO, in the atmosphere is of great environmental
significance, especially the processes of their sources and
sinks.

Nitrate is ubiquitous and the main sink of NO, in the
troposphere. HNO,/nitrate exists in the gaseous, liquid,
and particulate phases. Gaseous HNO; can be adsorbed
on the surface of particles or react with other species
(such as NH;) to form nitrate and finally enter the
particulate phase. Nitrate is one of the main components
in both coarse and fine particles, accounting for about
2 %—-34 % of atmospheric particulate matter (Sun et al.,
2015; Li et al., 2018; van Donkelaar et al., 2019; Shang
et al., 2021). The content of nitrate is affected by
temperature, relative humidity, and the concentrations of
NO,, SO,, and NH; (Sun et al., 2015; Li et al., 2018).
Nitrate also exists in the form of the nitrate ion (NO;") in
aerosol liquid water under humid conditions because of
its high hygroscopicity. Organic nitrates (ONs) in the
atmosphere, namely esters containing nitrate groups and
their derivatives, also contain —ONO, groups bound by
covalent bonds (Roberts, 1990; Gu et al., 2017; Yang
et al., 2019). ONs are mainly formed through the reaction
between VOCs and free radicals with the participation of
NO,. ONs have concentrations of about 0.08-4.0 pg/m3
and account for 3 %-38 % of organic aerosol in the
atmosphere (Rollins et al., 2012; Kiendler-Scharr et al.,
2016; Lee et al., 2016). Nevertheless, this review only
focuses on inorganic nitrates and does not discuss ONs
due to their wide varieties and different properties.

The formation pathways of nitrate in atmospheric
particles include gas-phase reactions between NO, and
OH to form HNO, followed by adsorption on particles or
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Fig. 1

Atmospheric chemical processes related to NO, in the atmosphere.
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neutralization by NH, (Logan et al., 1981; Neuman et al.,
2003), hydrolysis of N,O5 on wet surfaces (Russell et al.,
1986; Ravishankara, 1997; Chang et al.,, 2011),
heterogeneous reactions of NO, on aerosol (Goodman
et al., 1998; Miller and Grassian, 1998; Finlayson-Pitts,
2003; Usher et al., 2003), and so on. The formation of
nitrate is a key process of NO, removal in the atmosphere
because HNOs/nitrate has been considered a permanent
sink of NO, (Finlayson-Pitts and Pitts, 2000). However,
the discovery of the renoxification process changed this
concept of HNO,/nitrate being a permanent sink for NO..
The pathways for HNOs/nitrate to be transformed back to
reactive gaseous compounds, e.g., NO, NO, and HONO,
have been called “renoxification” (re-NO,-ification). For
example, NO can react with surface adsorbed HNO; to
form HONO, which is considered to be a renoxification
process of HNO, (Fairbrother et al., 1997; Rivera-
Figueroa et al., 2003).

In recent years, scientific interest in renoxification has
been rekindled by the laboratory observation of rapid
photolysis of HNOs/nitrate deposited on various mediums
in the atmosphere (Honrath et al., 1999; Honrath et al.,
2002; Zhou et al., 2003). The photolysis mechanism and
rate of HNOs/nitrate refer to not only the interaction
between HNO,/nitrate and light (e.g., characteristic
absorption band of nitrate) but also the existence forms of
HNOq/nitrate, the properties of different substrates and
interfaces, relative humidity, and coexisting compounds.
The photolysis rate constants of nitrate adsorbed on
surfaces vary over 1-4 orders of magnitude, while the
reasons for this are not fully understood (Baergen and
Donaldson, 2013; Ye et al., 2016; Ye et al., 2017b; Ma
et al., 2021). A complete understanding of the photolysis
of HNOj/nitrate in aerosol particles requires detailed
knowledge of the complexity and varying properties of
aerosol particles and their effects on kinetics. A recent
review by Gen et al. has discussed the factors and
mechanisms affecting particulate nitrate photolysis and
the reactions initiated by nitrate photolysis in particulate
phase (Gen et al.,, 2022). However, a comprehensive
review on the photolysis of nitric acid or nitrate in various
phases including gas phase, aqueous phase, and
particulate phase, as well as its environmental effects in
the atmosphere is still lacking. In this review article, we
summarize recent advances in the photolysis of
HNOq/nitrate, with a focus on the mechanism, kinetics,
and key factors affecting the reaction in the gas phase,
liquid phase, and particulate phase. The atmospheric
implications, especially on atmospheric chemistry and
local atmospheric environment, are discussed, and future
research is recommended.

2 Experimental requirements for studying
nitrate photolysis

As a typical renoxification process, the accurate

measurement of the gaseous products in HNOs/nitrate
photolysis is a key issue. The optimal experimental
approach for this employs a chamber (Shi et al., 2021),
close infrared reaction cell (Mochida and Finlayson-Pitts,
2000; Schuttlefield et al., 2008), or flow reactor, such as a
cylindrical photochemical flow reactor (Ye et al., 2016;
Bao et al., 2018; Xu et al., 2021) or wall-coated flow tube
reactors (Yang et al., 2018; Ma et al., 2021). The core
components of these systems are the light source, the
reactor, and the detection system. The light source is
generally a xenon lamp, mercury lamp, or black light
lamp that emits visible or ultraviolet light. The reactors
are mainly made of light-transmitting inert materials,
such as quartz, glass, and polytetrafluoroethylene
(Teflon). Analysis of the products of nitrate photolysis
includes gas-phase product and ionic composition
analysis. Gas-phase products are mainly analyzed by gas
analyzers (such as NO, analyzers and HONO analyzers)
and infrared spectroscopy. NO,™ is the main photolysis
product of nitrate ions in the liquid phase and is measured
by colorimetry or ion chromatography (Goldstein and
Rabani, 2007; Roca et al., 2008; Han et al., 2021).

The experimental results of nitrate photolysis are
generally described by the apparent production rate of the
product (P,) and the photolysis rate constant of nitrate
(Jino,-n)- Py is calculated by Eq. (1) (Ma et al., 2021):

Fox [Teydt
= ! , 1
60x 1000 (t, —t;) )X RXT M

where P, is the observed production rate of the product
(1076 mol/s), N represents NO_ or HONO, F, is the
carrier gas flow rate (L/min), R is the gas constant, T is
the absolute temperature (K), ¢, and ¢, are the time (min)
when the light exposure experiment is started and
finished, respectively, Cy is the concentration of the
product (ppbv), and 60 and 1000 are unit conversion
factors. If the losses in the reactor and the detection
process are considered, it is necessary to multiply the
results by a certain correction coefficient based on Eq. (1)
to correct the results (Ye et al., 2019).

The nitrate photolysis rate constant of a specific pro-
duct N (Juno, ) 1s calculated by Eq. (2) (Ye et al., 2019):

Pyx107°
JHNO;—>N = N—,

N HNO;

where Jyno,_n 1S the observed production rate of the
product (s7!) and Nuno, is the amount of HNO4/nitrate
(mol).

In general, the product N are mainly NO, and HONO,
and the overall photolysis rate constant of nitrate can be
described as (Eq. (3)):

N

2

3)
Besides, the experimental nitrate photolysis rate
constants can be normalized to the photolysis rate

Juno, = Juno,—nono + Juno,—no, -
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constants under tropical noontime conditions on the
ground (solar elevation angle 6 = 0°), which can eliminate
the effect of different experimental sites on the photolysis
rate constant and make different experiment results
comparable (Ye et al., 2016).

3 Photolysis of HNO; in the gas phase

The formation of HNO; in the photochemistry of VOCs-
NO, mixtures means that the chain reaction involving
NO, molecules terminates and NO, exits the NO, cycle.
The concentration of gaseous HNO; is about 0.17-
1.1 pg/m3 with obvious diurnal variation characteristics
(Finlayson-Pitts and Pitts, 2000; Chen et al., 2021). HNO,
is easily adsorbed on the surface or dissolved due to its
viscosity and water solubility. Therefore, dry or wet
deposition is the main sink of gaseous HNO; compared
with its reaction with OH radicals (Finlayson-Pitts and
Pitts, 2000).

The photolysis products of gaseous HNO, include OH
radicals, NO,, HONO, and O(*P) through the following
Egs. (4)—(6) (Kenner et al., 1986; Atkinson et al., 2004;
Zhu et al., 2010):

HNO, + hv — - OH +NO, (1 < 604 nm) 4)
HNO, +hv — - OH+[NO,|* (1<381nm)  (5)

HNO; + hv - HONO+OCP) (1<393nm)  (6)

Johnston et al. (1974) speculated that Eq. (4) is the
main pathway for the photolysis of gaseous HNO, based
on the measurement of quantum yield. When the
wavelength of light becomes shorter, other channels
become more important. Kenner et al. (1986) found that
the active intermediate HONO would have a long lifetime
and become the main product of gaseous HNO,
photolysis when in the lowest triplet energy state.
Another possible formation mechanism of HONO is the
reaction of the excited NO, molecule ([NO,]") with H,O
(Eq. (7)) (Li et al., 2008):

[NO,] + H,0 — -OH+HONO (1< 381 nm)  (7)

However, Zhu et al. (2015) redesigned the photolysis
experiment of gaseous HNO; under 308 nm light condi-
tions by using cavity ring-down spectroscopy. Their
results showed that the NO, produced by the photolysis
of gaseous HNO; is in the standard ground state and has a
different spectrum from that of [NO,]". Thus, the excited
state of NO, produced in the photolysis of gaseous HNO,
is still unclear. Fig. 2 summarizes the photolysis reactions
of gaseous HNO;.

The photolysis of gaseous HNO, depends on the
photochemical absorption cross-section (o) and the
wavelength of the light source. The photochemical
absorption cross-section of HNO; is in the range of 1.36 x
10717-1.01 x 10720 and 1.01 x 10720-0.42 x 10723 ¢cm?/

HONO
S
P
-OH + NO, v NoY— o o+ [NOJ*
> ) < 604 nm ) <381 nm :

Fig.2 Photolysis reactions of gaseous HNO;.

molecule in the wavelength ranges of 190-290 and
290-350 nm, respectively (Finlayson-Pitts and Pitts,
2000). In addition to the light wavelength, temperature
and relative humidity can also affect the photolysis of
gaseous HNO;. Burkholder et al. (Burkholder et al.,
1993) showed that the photochemical absorption cross-
section and photolysis rate of gaseous HNO, increase
with the increase of temperature in the range of 240-
360 K. An increase in RH can decrease the production of
NO, and increase the production of NO and HONO in the
photolysis of gaseous HNO, under 308 nm light
conditions (Zhu et al., 2015; Zou et al., 2015). The
measured photolysis rate constant of gaseous HNO; in the
troposphere is about 3 x 10777 x 1077 s~!, which is
relatively slow (Ye et al., 2016; Bao et al., 2018; Zheng
et al., 2020). Thus, the photolysis of gaseous HNOj is not
important for the formation of HONO and the renoxifica-
tion process in the troposphere.

4 Photolysis of NO;7(aq) in liquid phase

Most nitrates in aerosols have strong hygroscopicity and
high solubility, resulting in deliquescence or dissolution
into an ionic state under humid conditions. The
concentration of NO, (aq) is affected by aerosol liquid
water content, relative humidity, temperature, concentra-
tions of precursors (such as NO,), and chemical reactions,
in which the aerosol liquid water content and humidity
are the most influential factors (Finlayson-Pitts and Pitts,
2000; Seinfeld and Pandis, 2016; Zheng et al., 2020;
Wang et al., 2021). Temperature affects the aqueous
concentration of NO; (aq) due to the volatility of nitrate
(Seinfeld and Pandis, 2016).

4.1 Photolysis mechanism of NO; (aq)

NO;(aq) is an important photochemically active
compound with ultraviolet absorption peaks at 200 nm
and 310 nm (Maria et al., 1973). Thus, the photolysis of
NO; (aq) mainly occurs in the ultraviolet band. There are
two possible photolysis pathways of NO; (aq) (Mark
et al., 1996; Mack and Bolton, 1999; Dubowski et al.,
2001; Roca et al., 2008). One is the transformation of
NO; (aq) into an excited state [NO;]*(310) at 310 nm
due to the n—n* transition (Eq. (8)), and [NO3_]*(310)
further decomposes in two different ways (Egs. (9) and
(10)) (Wagner et al., 1980):
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NO;™ +hv — [NO;7]'(1 > 280 nm) (8)
[NO,]" = NO,” +O(CP) 9)
H*+[NO;"]" - NO, +- OH (10)

The ground state oxygen atoms will react with
NO; (aq) to form nitrite and molecular oxygen (Eq. (11))
(Wagner et al., 1980):

OCP)+NO;” - NO, +0, (11)

The other pathway is the transformation of NO; (aq)

into an excited state [NO3*]*(200) at 200 nm due to the

n—7* transition. Then, [NO; ]%(200) can either convert

into [NO; 1(310) or isomerize to peroxynitrite (ONOO")
(Wagner et al., 1980):

NO;™ + hv = ONOO™ (4 < 280 nm) (12)

The peroxynitrite anion can undergo the following
reactions (Egs. (13)—(17)) (Goldstein and Rabani, 2007):

ONOO™ +hv —NO+0, -~ (13)
ONOO™ +H" - HOONO (14)
HOONO — NO,™ +H* (15)
HOONO — NO, + - OH (16)
ONOO™ +-OH — OH + 0, +NO - (17)

However, there is little research about the second
pathway (formation of ONOO™) at the environmental
wavelengths because the reaction needs shorter wave-
length than tropospheric actinic radiation and ONOO™ is
easily protonated.

A research focus of the NO,; (aq) photolysis mecha-
nism is the secondary reaction of the photolysis product
NO,™. These secondary reactions produce different
products that affect the apparent quantum yield of
NO; (aq) photolysis. NO,” can be protonated under
acidic conditions and produce HONO and H,ONO™
(Eq. (18)) (Scharko et al., 2014):

NO,  +H;0" - HONO +H,0 (18)

NO,™ can also react with OH radicals to produce NO,
(Eq. (19)) (Logager and Sehested, 1993):

NO,” +-OH — NO, + OH" (19)

In addition, NO,™ also has photochemical activity. The

main photolysis products of NO,™ are OH radicals and

NO radicals at wavelengths in the range 200400 nm
(Egs. (20)—(23)) (Mack and Bolton, 1999):

NO, +hv — [NO, | (20)
[NO, " > NO-+0 -~ 2D
O " +H,0—- -OH+OH (22)
-OH+NO - - HONO (23)

4.2 Main factors affecting the photolysis of NO; (aq)

The products of the photolysis of NO;™(aq) include NO,™,
OH, HONO and NO,. NO,™ and OH radicals are consi-
dered the primary products in the photolysis of NO; (aq),
while HONO and NO, are the subsequent reaction
products (Wang et al., 2021). The formation of HONO
and NO, and the quantum yield of NO,™ and OH radicals
in the photolysis of NO; (aq) depend on a variety of
factors such as wavelength, OH scavengers, pH,
NO;™(aq) concentration and cations.

The wavelength of the source light affects the quantum
yields of the main products directly. In the wavelength
range of tropospheric actinic radiation (4 > 290 nm),
NO; (aq) has the highest absorption efficiency for UV
light in the vicinity of 310 nm, which can provide higher
energy for NO,™ photolysis and increase the quantum
yields of photolysis products (Zafiriou and Bonneau,
1987). Thus, the weak n—n* transition absorption band
of NO;™(aq) is more important in the troposphere. If the
wavelength is less than 200 nm, the strong n—n* transi-
tion may be excited and cause an increase in quantum
yields.

OH scavengers affect NO; (aq) photolysis and its
quantum yield by affecting secondary reactions of
NO; (aq) photolysis products. The main product NO,~
will be consumed by the reaction with OH radicals (Eq.
(19)) and OH scavengers can protect NO, , which
promote the apparent quantum yield of NO,”. NO,™ can
also be protonated under acidic conditions to produce
HONO (Eq. (18)) (Scharko et al., 2014) and HONO will
react with OH radicals to produce NO, (Eq. (24))
(Finlayson-Pitts and Pitts, 2000):

HONO +- OH — NO, + H,0 (24)

According to Eq. (19), OH scavengers can also enhance
the formation of HONO but inhibit the formation of NO,.
Another possible reason for the effect of OH scavengers
is the formation of superoxide (O, (aq)). O, (aq) can
react with NO (aq) and produce OONO,™ and OONO™.
OONO,™ and OONO™ can be converted to NO,™ and
enhance the apparent quantum yield of NO,™ and the
subsequent formation of HONO.

In addition to impacting the secondary reaction of NO,~
and the formation of HONO and NO,, OH scavengers can
also enhance the photolysis of NO, (aq). Han and
Mohseni (2020)investigated the effect of dissolved
organic carbon (DOC) and dissolved inorganic carbon
(DIC, such as carbonate) in the liquid phase on the
photolysis of NO;7(aq). Their results showed that DOC
and DIC in the liquid phase can play roles as OH
scavengers and enhance the photolysis of NO; (aq)
through pushing the photolysis equilibrium of NO; (aq)
to the right (Egs. (8)—(10)). However, the effect of DIC
on the photolysis of NO;~ was not obvious at the low
concentration. In conclusion, the main effect of OH
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radical scavengers is to consume OH radicals in the liquid
phase and affect their reaction with NO; (aq), NO, (aq),
HONO(aq), and OONO™(aq), which further affect the
formation of HONO and NO,. The scavenging efficiency
and rate of OH radical scavengers depend on their
reactivity and solubility.

The pH affects the quantum yields of photolysis
products by changing the reaction mechanism. Zellner
et al. (1990) measured the absolute quantum yields of OH
radicals (POH) at 308 and 351 nm in the pH range 4-11,
in which thiocyanate ion (SCN™) was used as an OH
scavenger. Their results showed that ®OH was essentially
independent of pH in the range 4-9 and increased with
pH in the range of 9-11. Mark et al. (1996) conducted
nitrate photolysis experiments in the pH range of 4-13
without OH radical scavengers. Their results showed that
the quantum yields of NO,™ (PNO,") increased with the
increase of pH and had a sigmoidal pH dependence. A
possible reason is that NO,~ will be protonated to form
HONO which escapes into the gas phase and reduces the
apparent ®NO,". Another possible reason is that OH
radicals will react with peroxynitrite anion due to the
absence of OH radical scavengers (Egs. (25) and (26)),
which compete with the protonation isomerization of
peroxynitrite (Eq. (15)):

ONOO™ +- OH — ONOO - +OH" 25)

ONOOH + - OH — ONOO - +H,0 (26)

This competitive process will decrease at high pH,
which increases the concentration of nitrate ions, as well
as the quantum yields. The pH can also affect the effect
of OH scavengers. Scharko et al. (2014) found that the
pH dependence of HONO and NO, concentrations are
more significant in the presence of OH scavengers (such
as organic matters, HCO;~, and CO;2"). Benedict et al.
(2017) found that the effect of OH scavengers is less
effective at low pH.

The NO; (aq) concentration can affect the initial
formation rate and the steady-state concentration of
products. Han and Mohseni (2020) found that the initial
production rate of NO,™ first increases and then remains
stable with increasing NO; (aq) concentration. Their
explanation is that high-concentration nitrate inhibits the
production of OH by water photolysis, thus affecting the
formation of nitrite. Another possible reason is the self-
inhibition of nitrite, in which nitrite and its radicals (Egs.
(19)—(21)) participate in a complex set of reaction chains
to reform nitrate (Eqgs. (27)—(30)) (Benedict et al., 2017;
Han and Mohseni, 2020):

2NO,- — N,0, 27)
2NO -+0, - N,0, (28)
N,0,+H,0 — NO;” +NO,” +2H" (29)
NO, +O(CP) —» NO;~ (30)

Zepp et al. (1987) also proposed that the quenching
effect of nitrate and nitrite is the reason for the deviation
from linearity for the relationship between the nitrate
photolysis product concentration and NO,;™(aq) concentra-
tion. However, Brezonik and Fulkerson-Brekken (1998)
observed the opposite experimental phenomenon over a
wide range of NO; (aq) concentrations. The possible
reason for the discrepancy is differences in the intensity
of the light sources.

The effect of cations on nitrate photolysis is not fully
understood. Laboratory studies and molecular dynamics
simulation suggest that cations do not affect the formation
of products in bulk solution, but affect the NO; (aq)
concentration in the air-water interfacial region and thus
directly affect the effective quantum yield of NO; (aq)
photolysis (Richards-Henderson et al., 2015; Benedict
et al, 2017). Alif and Boule (1991) measured the
quantum yield of KNO; photolysis (PNO,") to be 6.5 x
1073 and Roca et al. (2008) reported values for ®NO,~
from Ca(NO,), are 0.23 x 1073-7.8 x 1073. Benedict
et al. (2017) measured the quantum yields of nitrates with
five different cations (K*, Na*, NH,*, Ca?*, Mg?"), and
the results were all close to 1.1 x 1073, which suggests
that the partner cation of nitrate has no effect on ®NO,~
in solution. In contrast, their results of ®NO,™ were twice
as high for KNO; and much smaller for Ca(NOs;),.
However, Richards-Henderson et al. (2015) found the
rates of NO, for KNO;, Mg(NO;),, and NaNO; are 2—
3 times higher than Ca(NO,), in thin aqueous films,
which suggests that cations affect the nitrate photolysis.

The reported quantum yields, photolysis rate constants,
and photolysis products of NO;™(aq) in referenced studies
are summarized in Table 1, and the photolysis reactions
of NO;™(aq) are summarized in Fig. 3. As shown in Table 1,
®NO," is typically an order of magnitude lower than
®OH and the two quantum yields (PNO,” and ®OH)
correspond to Egs. (9) and (10), respectively. Due to this
difference, previous model studies tended to ignore NO,~
and subsequent HONO formation, and only focused on
NO, (Herrmann et al., 1999; Leriche et al., 2000; Frey
et al., 2015). However, Benedict et al. have found that the
values of ®NO,™ and ®OH are comparable in magnitude,
which suggests that formation of NO,™ and HONO from
NO;(aq) photolysis is comparable to NO, formation
(Benedict et al., 2017). Even so, the absolute values of
photolysis rate constants and quantum yield in the
photolysis of NO, (aq) are relatively low, which could be
due to the quenching effect of the surrounding solvent,
other solutes and nitrate itself causing the photo-excited
NO; (aq) to return to the ground state. Although nitrate
photolysis may promote the degradation of soluble
organic matter in solution, the photolysis of NO; (aq)
may not be important to the renoxification process in the
troposphere. Nevertheless, the enhancement effect of OH
scavengers in the aerosol liquid phase and special liquid
film environment may increase the importance of
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Table 1 Quantum yields, photolysis rate constants, and main photolysis products of nitrate ions in the liquid phase
Conditions Quantum yields/ Photolysis rate constants Photolysis products References
Room temperature 3.40-6.24x1070 57! HONO, NO, Wang et al., 2021
pH=6
phosphate buffer
A>295 nm
organic acid
295K 8.5x1077s7! HONO, NO,, NO,~, OH Scharko et al., 2014
pH=4-9
A=290-420 nm
248-268 K DONO,~ NO,~, OH, NO, Dubowski et al., 2001
A=295nm 1.3-4.8x1073
278-358 K OOH NO,~, OH Zellner et al., 1990
pH=28 2.7-15.3x102
A=351nm
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Fig. 3 Photolysis reactions of NO;7(aq).
NO; (aq) photolysis, and further research is needed to particulate matter, ammonium nitrate (NH,NO;)

assess the extent of the enhancement and the contribution
to the renoxification process.

5 Photolysis of nitrate in the particulate
phase

The main existence form of particulate nitrate (pNO,;™/
HNO;(s)) depends on the particle size. Particulate nitrate
refers to nitrates adsorbed on various surfaces or in
deliquescent aerosol particles in this review. In fine

produced by the reaction between nitric acid and NH; is
the main existence form of pNO;/HNOs(s) (Zhuang
et al., 1999; Lee et al., 2008; Seinfeld and Pandis, 2016).
In contrast, pNO; /HNO,(s) exists in the form of metal
complexes such as NaNO;, KNO,, and Ca(NO,), rather
than NH,NO; in coarse particulate matter, which is
mainly due to the reaction of nitric acid or NO, with sea
salt or mineral dust (Zhuang et al., 1999; Yao et al., 2003;
Lee et al., 2008). Since nitrate mainly exists as pNO;™/
HNO4(s) in the atmosphere, the photolysis of pNO;™/
HNO(s) has received much attention.
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5.1 Photolysis of pNO; /HNO,(s)

Particulate nitrate exists not only in aerosols, but also on
various surfaces such as the ground, building surfaces,
and plant surfaces. Therefore, the photolysis of absorbed
HNO;(s) or mixed pNO;7(s) on various natural and arti-
ficial surfaces, including on model particles (Gankanda
and Grassian, 2014; Dyson et al., 2021; Ma et al., 2021),
natural atmospheric particulate matters (Ye et al., 2017b;
Bao et al., 2018), urban grime (Baergen and Donaldson,
2013; Baergen and Donaldson, 2016), building materials
or roads (Ye et al., 2016), plant leaves (Ye et al., 2016),
indoor surfaces (Schwartz-Narbonne et al., 2019; Pandit
et al.,, 2021), and ice and snow (Morenz et al., 2016;
McFall et al., 2018) has been widely investigated. The
wavelength band for pNO;/HNO,(s) photolysis is
290-420 nm, mainly the UV light in the troposphere, and
the photolysis rate constant of adsorbed pNO; /HNO5(s)
is 1-4 orders of magnitude higher than that of gaseous
HNO; or NO;™ in the liquid phase (Ye et al., 2016; Ye
et al., 2017b; Yang et al., 2018; Dyson et al., 2021; Ma
et al., 2021). It was found that the absorption cross-
section of HNO,(s) at the wavelengths of 308 nm and
335-365 nm significantly increased compared to gas-
phase HNO, based on Brewster's angle cavity ring-down
spectroscopy measurements (Zhu et al., 2010; Du and
Zhu, 2011). The interaction with the substrate is a key
reason for the increase in absorption cross-section and the
rapid photolysis of adsorbed pNO,;/HNO;(s). Ye et al.
(2016) suggest that the interactions between pNO,™/
HNO;(s) and the surface reaction sites or other molecules
can distort the molecular structure of nitrate. The
distortion can cause enhancement of the photochemical
absorption cross-section or the red-shifting of light
absorption. In addition, smaller aerosol particles have
optical resonance and increase the optical path length and
the intensity of internal light through refraction, which
may enhance the photolysis of nitrate.

5.2 Photolysis mechanisms of pNO, /HNO,(s)

The photolysis pathways of adsorbed pNO,/HNO;(s)
include direct and indirect photolysis mechanisms. In the
direct photolysis process, pNO; /HNO5(s) absorbs UV
light and causes the cleavage of the N-O bonds while the
indirect process depends on the photosensitizers (Bao
et al., 2020).The direct photolysis mechanism is similar to
the photolysis of gaseous HNO;, and includes the
excitation of pNO,;7/HNO,(s) and the subsequent
decomposition (Egs. (31)—(36)) (Yang et al., 2018; Ye
etal., 2019):

HNO,;/NO, (s) + hv — HNO,"/[NO; 7| (s) (30D

[NO;"["(s) = NO, ™ (s) + OC'P) (32)

[NO;7]"(s) = NO,(s)+ 0" (33)
H,0" +NO, ™ (s) - HONO(s) (34)
HNO;’ (s) — OH (s) + NO, (s) (35)

HNO;’ (s) - HONO(s) + OCP)(s) (36)

[Tl
S

where “s” represents surface adsorption. The direct photo-
lysis mechanism plays a dominant role in the photoly-
sis of pNO;/HNO,(s) without coexisting components.

The indirect photolysis mechanism requires the
participation of photosensitizers. Photosensitizers are
defined as a class of molecules that only absorb photons
and transfer energy to other molecules to promote
photochemical reactions, but do not participate in the
reactions themselves. The primary photosensitizers in the
photolysis of pNO,/HNO,(s) are chromophoric organic
compounds such as carboxylic acids, aldehydes, benzene,
phenols, polycyclic aromatic hydrocarbons (PAHs), and
humic-like substances (HULIS). If chromophoric organic
compounds exist in the photolysis system, the indirect
photolysis process may be dominant.

The photosensitizer is first excited by photons in
indirect photolysis (Eq. (37)):

Chromophore + 4v — Chromophore” (37)
The renoxification process can proceed by the
following two pathways after the photosensitizer is
excited (Bao et al., 2020):
1) The excited photosensitizer transfers electrons to
HNO4(s), and HNOs(s) converts to the anion radical
(HNO; ™). HNO; ™ further converts to NO, (Eq. (38)):

Chromophore” + HNO; — Chromophore™ - +OH™ + NO,
(38)
The photolysis of NO, can further produce NO or
HONO (Egs. (39) and (40)):

NO, + /v — NO+0 (39)

NO, +hv+H-R —- HONO +R (40)

2) Reactive oxygen species (ROS, such as superoxide,
oxygenated organic radicals, and hydrated electrons)
produced by excited photosensitizers can initiate the
renoxification process (Egs. (41) and (42)) (Han et al.,
2016):

Ar-C=0+hv— Ar-C=0" (41)

Ar—C =0"+HNO; — products+ HONO  (42)

5.3 Main factors affecting the photolysis of pNO;(s)

A variety of factors such as the substrate, pNO,”/
HNO,(s) loading, RH, pH, light source, and coexisting
components can affect the photolysis of pNO,; /HNO;(s).

Substrates. The interaction between pNO;/HNO;(s)
and various substrates is the most important factor
affecting nitrate photolysis. The effects of substrates on
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nitrate photolysis are often described as matrix effects.
Different from coexisting components, substrate refers to
the surface to which pNO;/HNOjs(s) is adsorbed. Matrix
effects depend on the physicochemical properties of the
substrates and the interaction of the substrates with
nitrate. Absorbance is the most important physicoche-
mical property, and if the substrate contains photocata-
lytic components such as TiO,, it will promote nitrate
photolysis. Xu et al. (2021) studied the matrix effect of
TiO, on nitrate photolysis. Their experiments find that
TiO, has a great influence on the flux density of nitrate
photolysis products, which is related to the crystal
structure and mass ratio of TiO,. It was also found that
the photolysis of nitrate on the surface of TiO, is stronger
than that on the surface of Al,O,, SiO, or NaY zeolite
(Gankanda and Grassian, 2014; Ma et al., 2021). The
enhancement of nitrate photolysis by TiO, can be
explained by the following reactions (Eqs. (43)—(48)) (Xu
etal., 2021):

TiO, + hv — e, +h}, + TiO, (43)
H,0+h}, - HO -+H" (44)
NO; +h}, —» NO;- (45)
NO; - +hv —» NO, + O - (46)
NO, +e;, — NO; (47)
NO; +HO - - NO, + OH" (48)

These results are not surprising since TiO, is a good
photocatalyst material. However, other substances also
have enhancement effects on the photolysis of pNO;™/
HNO;(s), and the main reason is the interaction of the
substrates with nitrate. Ye et al. (2019) studied the matrix
effects of various model substrates and proposed that the
interaction of pNO;/HNO,(s) with the substrate may
distort the molecular structure of nitrate, cause the red-
shift of the absorption spectrum into the actinic region,
and enhance the photolysis of pNO; /HNO;(s). Recently,
it was found that photolysis of nitrate can occur in indoor
environments, which could also be possibly attributed to
this red-shift effect (Schwartz-Narbonne et al., 2019;
Pandit et al., 2021).

Ice and snow are special substrates that exist widely in
the world, and the photolysis of nitrate on ice and snow
has been widely studied. For enhancement of nitrate
photolysis on ice and snow and other comprehensive
review, we refer readers to recent review article
(Blaszczak-Boxe and Saiz-Lopez, 2018).

Concentration. pNO;/HNO,(s) loading can affect the
photoproduction rate or the photolysis rate. Ye et al.
(2016) showed that the photolysis rate constant of
pNO;/HNO,(s) decreases with the increase in the
adsorbed HNOs/nitrate surface concentration (Duno,). A
logarithmic relationship between the photolysis rate

constant and Dyuyo, was determined according to Egs.
(49)—(51), indicating that a heterogeneous -catalysis
reaction was involved. High Dyyo, means that the contact
between adsorbed HNO,/nitrate and the catalytic
substrate is reduced, resulting in a decrease in the
photolysis rate (Ye et al., 2016).

a

J=——+c,
1+bDHN03 ¢

(49)

Dinoy . a
P = \[0 J (DHNoi) = Eln(l + bDHNO;) + CDHNO;’ (50)

P a
J = =
DHNOJ bDHNO;

where j is the photolysis rate constant of each
HNOq/nitrate molecule, P is the photolysis rate of
HNOy/nitrate on a unit surface area, J is the average
photolysis rate constant of all HNO,/nitrate molecules on
the surface, and a, b, and c are fitting constants related to
the surface adsorption properties. Subsequent experiments
on ground aerosol samples collected in Albany (USA)
and Delmar (USA) and airborne aerosol samples
collected in the Southeast USA also confirmed this
conclusion (Ye et al., 2017b). However, Shi et al. (2021)
conducted photolysis experiments on suspended submi-
cron particulate nitrate in an environmental chamber, and
did not observe any strong dependence for the
renoxification rate constant on nitrate mass concentration.
This suggests that the mechanism of the effect of nitrate
concentration on photolysis is different between
adsorption on surfaces and suspended particles, which
may be related to the mixing state.

H,0. H,0 exhibits a positive effect on the photolysis
rate constants and the ratio of HONO/NO, at low RH and
the opposite at high RH; however, the RH turning point
varies in different studies, from 45 % to 90 % (Bao et al.,
2018; Yang et al., 2018; Ye et al., 2019; Ma et al., 2021;
Xu et al., 2021).

At low RH, H,O can participate in the photolysis of
nitrate, form a cluster or produce OH radicals with the
photosensitizer, thereby promoting the photolysis of
nitrate. Ye et al. (2019) proposed that adsorbed HNO,
and water molecules may form cluster compounds at the
surface and increase the photolysis rate constant of
nitrate. Bao et al. (2018) evaluated the role of the water in
HONO production in the photolysis of pNO; /HNO,(s)
on real PM, s particles collected in Beijing (China), in
which the amounts of both HONO and NO, formed are
almost below the detection limit at RH = 0% but
significantly increase under high RH conditions. They
proposed that water molecules could directly participate
in the photolysis of pNO;/HNO;(s) in the form of H,O/
HNO; clusters (Eq. (52)):

HNO; (s) + H,O(s) + hv - HONO(s)+2-OH(s) (52)
H,O hinders the photolysis of HNO,(s) at high RH. Ye

In(1 +bDyno,) + ¢, (51
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et al. (2019) showed that water molecules adsorbed on the
surface under high RH conditions compete for the active
catalytic sites and form water molecular cages, and thus
reduce the photolysis rate constant of nitrate. On the other
hand, nitrates easily deliquesce under high RH conditions,
which is mentioned in Section 4 (Photolysis of NO; (aq)
in liquid phase). Ma et al. (2021) propose that nitrate
deliquescence will also inhibit the photolysis reaction
under high RH conditions and that the influence depends
on the hygroscopicity of the particles. Differences in the
hygroscopicity of nitrate may be a possible explanation
for the observed differences in RH turning points.

In addition, several studies have shown that water
molecules will react with photogenerated NO,(s) to
produce HONOC(s) on the surface (Eq. (53)) (Zhou et al.,
2003; Yang et al., 2018; Ye et al., 2019):

NO, (s) + H,O(s) » HONO (s) + - OH(s) (53)

This reaction does not affect the photolysis of nitrate in
theory, but does affect the product distribution of NO,
and HONO. However, researchers sometimes describe
nitrate photolysis in terms of the formation rate of
product, and the change in the HONO/NO, ratio can
affect the apparent formation rate, which affects the
photolysis of nitrate based on the experimental results.

H*. H' can participate in the photolysis of nitrate
directly and affect the release of photolysis products. Bao
et al. (2018) found that the production rate of HONO
gradually decreased to zero with the irradiation time, and
the introduction of HCl flux can restore HONO
production under light conditions in the photochemical
aging of PM,,, which is due to the formation of
photoactive adsorbed HNO, formed from the reaction
between H* and NO;~ in PM,,. Their subsequent
experiments also showed that HNO,(s) rather than
NO;(s) is the main photoactive substance for the
photolysis of nitrate to produce HONO, which indicated
that H* participates in the photolysis process and affects
the production of HONO (Bao et al., 2020).

Light. The effect of the light source on nitrate
photolysis depends on the wavelength and light intensity.
In general, the photolysis rate is proportional to the light
intensity and inversely proportional to the wavelength
(Gankanda and Grassian, 2014; Bao et al., 2018; Yang
et al., 2018; Xu et al., 2021). Compared with visible light,
UV light is the main cause of nitrate photolysis. For
example, Bao et al. (2018) found that the yield of HONO
in the photolysis of real PM, under visible light
irradiation (4 > 400 nm) is 63.1 % lower than that of the
full-spectrum irradiated samples at the same light
intensity.

In addition to the energy effect brought by the short
wavelength, the characteristic absorption band of nitrate
could be another important factor. The well-known
UV/Vis spectra of NO; (aq) are two absorption peaks at
200 nm and 310 nm as mentioned above. Gankanda and

Grassian found that the nitrate adsorbed on the surface of
Al,05 and TiO, can photolyze to produce NO, at a wave-
length of 350 nm (higher than the cut-off wavelength of
nitrate absorption), which suggests the red-shift in the
absorption spectrum (Gankanda and Grassian, 2014).
Therefore, the photolysis enhancement of pNO; /HNO,(s)
was attributed to a red-shift in the absorption spectrum
(Gankanda and Grassian, 2014; Ye et al., 2019).
However, the measurement of the absorption spectrum of
PNO;/HNO;(s) is limited.

Coexisting components. The effects of coexisting
components on nitrate photolysis include both promotion
and inhibition. Many coexisting components such as
organic compounds, sulfate, and halide ions can enhance
the photolysis of nitrate. Coexisting components can
affect the acidity of particles and provide H*. For
example, coexisting sulfate was found to conserve the
necessary acidic protons for nitrate photolysis because of
the nonvolatility of its conjugated acid (Bao et al., 2020).
Coexisting reducing species can also change the
distribution of reaction products. Ye et al. (2019) have
suggested that coexisting citric acid can reduce photolysis-
produced NO, to NO. Besides, coexisting components
can change the chemical environment and chemical
equilibrium. Recent studies have found that SO, will
enhance the photolysis of nitrate on TiO, by altering the
equilibrium between the formation and photolysis of
nitrate (Ma et al., 2021; Shang et al., 2022). In addition,
high-viscosity organics was also proposed to hinder
particulate nitrate photolysis (Liang et al., 2021). Other
coexisting species such as organics, cations, and halide
ions can also affect nitrate photolysis. Their mechanisms
include photosensitization, H-donation, and promoting
the surface propensity of nitrate anions. For more detailed
mechanisms of these factors, we refer readers to the
recent review (Gen et al., 2022).

In addition, physical (such as particle size and
morphology) and optical properties of aerosols affect the
photolysis of pNO;7(s) by affecting the distribution of
aerosol particles and the intensity of absorbed light.
However, there is little research on these factors (Ye
et al.,, 2017b; Liang et al., 2021). Gen et al. (2022)
suggested that the aerosol viscosity and Mie resonance
may enhance particulate nitrate photolysis through
affecting the morphology and optical properties. Other
factors such as incomplete solvent cage, ice and snow,
temperature, pH and RH can also refer to the review
mentioned above (Gen et al., 2022).

Table 2 summarizes the photolysis rate constants of
pNO;/HNO,(s) on various surfaces. The photolysis rate
constants of pNO;/HNO;(s) vary in the range 1.2x
1073 s71-6.0x107¢ s7! due to differences in experimental
conditions (surface materials and nitrate samples)
(Baergen and Donaldson, 2013; Ye et al., 2016; Ye et al.,
2017b, 2019; Ma et al., 2021). Figure 4 illustrates the
relationship between nitrate photolysis and atmospheric
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Table 2 Photolysis rate constants of pNO;™(s) on various surfaces

Surface types Conditions

Photolysis rate constants

Jio, (<1075 5°1) Compared with the gas phase or liquid phase

Natural/artificial surfaces
(Yeetal, 2016)
(plant leaves, metal, building

surface density of nitrate
0.4-28.0 x 107° mol/m?

materials)
Titanium dioxide 295+3K,
(Dyson et al., 2021) A=290-400 nm

Beijing, China
Atmospheric particulate matter
(Bao et al., 2018)

Albany, NY, USA
Atmospheric particulate matter
(Yeetal., 2017b)

average value of samples collected
over 15d, 298 K, RH 60 %,
simulated sunlight

293 K, RH 50 %,
A>290 nm
concentration of pNO;~
1.5-36.8 x 1072 mol/m?

293K, RH 50 %,
A>290 nm,

concentration of pNO,~

7.5-8.1 x 10" mol/m>

Delmar, NY, USA
Atmospheric particulate matter
(Yeetal., 2017b)

0.6-15.3 1-3 orders of magnitude higher than the
photolysis rate constants in gas phase or
liquid phase
329 50 times higher than photolysis rate
constants in the gas phase
11.67 1-3 orders of magnitude higher than
photolysis rate constants in the gas phase
1.0-13.0 2 orders of magnitude higher than photolysis
rate constants in the gas phase
6.1-17.0 2 orders of magnitude higher than photolysis

rate constants in the gas phase
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Fig. 4 Photolysis rate constants and lifetimes of nitrates in different
phases (Reprint from (Ye et al., 2017b) with permission from the
American Chemical Society).

lifetime in different phases (Ye et al., 2017b). pNO5~/
HNO;(s) have shorter atmospheric lifetimes, which are in
the range of 0.1 to 100 hours. Therefore, the contribution
of pNO;/HNO,(s) photolysis to renoxification is more
important than that of gaseous HNO; and NO;(aq) in the
liquid phase. The consideration of pNO; /HNO;(s)
photolysis in current atmospheric chemistry mechanisms
improves the simulations of reactive nitrogen chemistry
in regional and global models. However, the specific
mechanisms of the photolysis of particulate nitrate are
still unclear and further research is needed in the future.

6 Summary, recommendations, and
outlook

Fig. 5 summarizes the photolysis mechanisms of nitrate.
The direct photolysis mechanism involves photoinduced
cleavage of the N-O bonds, photoisomerization, and
reactions between the photolytic fragments. The indirect

photolysis mechanism involves photosensitization and
cleavage of the N-O bands. Photon absorption, proton
transfer processes, and electron transfer processes are
important factors determining the mechanism of nitrate
photolysis.

Nitrate is one of the main components of atmospheric
particulate matter, and the concentration of nitrate aerosol
is closely related to regional air quality. In the USA,
Europe, and other places where the air pollution from fine
particulate matter is relatively low, the annual average
concentration of pNO,™ is 0.2-3.0 pg/m? (Blanchard
et al., 2007; Xing et al., 2015). In North China, the
average concentration of pNO;~ can reach 16.0-
87.2 ug/m3, accounting for 10.4 %-29.9 % of PM,,
(Wen et al., 2015; Xu et al., 2016; Jiang et al., 2017). In
recent years, the proportion of nitrate aerosols in
atmospheric particulates has shown an upward trend.
Several studies have shown that the relative content of
sulfate decreased by about 10 %-50 %, and the relative
content of nitrate increased by about 7 %-25 % in the
aerosol particles in the North China Plain and the Sichuan
Basin (China) from 2006 to 2017 (Spindler et al., 2013;
Xu et al., 2019; Wang et al., 2020; Cheng et al., 2022),
which suggests that nitrate plays an increasingly impor-
tant role in the process of air pollution. The photolysis of
HNOq/nitrate is indispensable in the process of air
pollution and will initiate a series of reactions in the
particulate phase (such as nitration for browning
atmospheric aerosol). For these reactions and their
environmental effects, we refer readers to the recent
review (Gen et al., 2022). In this review, we focus on the
effects of nitrate photolysis on atmospheric models,
chemistry, and the local chemical environment. The
photolysis of HNO,/nitrate can produce NO, and HONO
and affect the process of nitrate recycling and the regional
atmospheric chemical process as follows.

First, the photolysis of HNO,/nitrate can explain the
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Fig.5 Photolysis mechanisms of nitrate.

differences in HNO; concentrations between field
measurements and model simulations. In the early
research, a large difference existed between HNO,
observations and model simulations. Models tended to
overestimate the concentration of HNO; such that the
predicted ratio of NO,/HNO, was 5 to 10 times smaller
than the observed values (Perkins et al., 2001; Rivera-
Figueroa and Finlayson-Pitts, 2003). Model simulation
results using modified rate constants of gas-phase
reactions (such as OH+NO, and OH+HNO;) could
reduce the gap, but it was still difficult to match the
observed ratios of NO,/HNO; (Gao et al., 1999; Perkins
et al.,, 2001). This suggested that unknown pathways of
HNO; loss were missing from the current chemical
mechanisms. The photolysis of HNO,; and the
heterogeneous reaction of HNO, with gaseous species
(such as NO and CO) were considered to be two possible
mechanisms. An early model study suggested that the
heterogeneous reaction between CO and HNO; could

well reproduce the measured ratio of NO/HNO; (Lary
and Shallcross, 2000). However, later laboratory
experimental results showed that the heterogeneous
reactions of CO, CH,, SO, and NO with HNO; under
ambient atmospheric conditions were not important in the
troposphere (Rivera-Figueroa and Finlayson-Pitts, 2003;
Kleffmann et al., 2004). Therefore, the photolysis of
nitrate may be an important factor affecting the
concentration of atmospheric HNO;.

Second, the photolysis of HNO,/nitrate may explain the
differences in HONO concentrations between field
measurements and model simulations. HONO is an
important precursor of OH radicals in the troposphere.
OH radicals produced by HONO photolysis in the
troposphere account for 20 %—-80 % of the total OH
radicals in the troposphere (Acker et al., 2006;
Elshorbany et al., 2010). Several studies have shown that
the measured daytime HONO concentration is greatly
different from the modeled concentration based on the
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known gas-phase chemical mechanism, with a difference
of about 49 %—86.4 % (Kleffmann, 2007; Huang et al.,
2017; Liu et al., 2021). Field observations also suggested
the existence of unknown HONO sources (Zhang et al.,
2009; Li et al., 2014). The photolysis of pNO;7(s) and the
heterogeneous photoreaction of NO, on aerosols are
considered two potential sources of daytime HONO
(Kleffmann, 2007; Huang et al., 2017; Ye et al., 2017b;
Bao et al., 2018). Nevertheless, current modeling results
indicate that the contribution of pNO;7(s) photolysis to
daytime HONO sources may only be important under
certain environmental conditions (Sorgel et al., 2011;
Oswald et al., 2015). For example, it was suggested that
the contribution of pNO;7(s) photolysis to unknown
diurnal HONO sources is high in remote, suburban, and
rural areas with low NO, concentrations, but low in urban
environments with high NO, concentrations (Ye et al.,
2017a; Ye et al., 2017b; Tsai et al., 2018). Therefore, the
specific contribution of pNO;7(s) photolysis to the
unknown HONO source in the daytime and specific
environmental conditions are worth exploring and further
research.

Third, the photolysis of HNO./nitrate can be involved
in other chemical processes such as the oxidation of SO,
to sulfate, formation of secondary organic aerosols (SOA)
and formation of Cl,. The photolysis of nitrate can
produce oxidants such as NO,, OH radicals, and N(III)
(NO,/HNO,), which play a potential role in improving
the atmospheric oxidative capacity. Sulfite or bisulfite in
aerosol liquid water can be oxidized to sulfate by NO,,
OH radicals or N(III) formed in the photolysis of nitrate,
which could be important formation pathways during the
haze event (Gen et al., 2019a,b). For example, a model
work showed that the enhanced effect of pNO;(s)
photolysis on the heterogeneous oxidation of SO, could
explain 15 % to 65 % of the difference in sulfate
concentrations between model simulations and field
observations during winter haze in Beijing (China)
(Zheng et al., 2020). The contribution mainly depends on
the enhancement of the photolysis rate constant of
pNO;(s) in aerosol. Nitrate photolysis was also found to
enhance the formation of SOA in the oxidation of organic
compounds. The OH radicals produced by the photolysis
of nitrates can oxidize organic compounds in aerosol to
form dimers or oligomers with low volatility, which are
finally converted into SOA in particulate phase. Besides,
recent field and laboratory experiments indicate that
pNO;(s) photolysis by sunlight under acidic conditions
(pH < 3.0) can activate chloride to produce Cl,, which
can account for the observed daytime Cl, production
(Peng et al., 2022). This research suggests that nitrate
photolysis is a significant daytime chlorine source
globally and has an active effect on atmospheric oxidative
capacity. Thus, the photolysis of pNO;(s) can
significantly contribute to the secondary formation of
atmospheric active species and pollutants, and more

detailed mechanisms of SO, and organics oxidation are
referred to this review (Gen et al., 2022).

Finally, the photolysis of HNOs/nitrate can lead to the
transmission of NO, with particulate matter and affect the
distribution of NO,. Ye et al. (2017a) used a zero-
dimensional box model to study the effect of photolysis
of pNO;~ on NO, and O, abundances in the remote
marine boundary layer (MBL) of Cape Verde. Their
results show that a model with the addition of the
photolysis process of pNO,;™ can better reproduce the
measured NO, and Oj levels. It is suggested that NO,
may be transported over long distances through the
photolysis process of pNO;~, and may affect regional
NO, levels and atmospheric chemistry.

Several recommendations are made for future research.

Improve experimental conditions to simulate a more
realistic tropospheric environment. Previous studies
mainly focused on model nitrates (such as KNO, and
NH/NO;) or HNO; rather than real particulate matters.
Although several studies have conducted photolysis
experiments on real PM, 5, the nitrate samples are usually
in an adsorbed state rather than a suspended state as exists
in the atmosphere. Differences in photolysis rate
constants due to particle dispersion and their reasons are
not clear. More laboratory studies are necessary to
investigate the photolysis of nitrate under more realistic
tropospheric environmental conditions.

The specific mechanisms of nitrate photolysis. Many
factors have been shown to enhance nitrate photolysis.
However, most of the specific mechanisms of these
enhancements are still at the level of conjecture and
theory, lacking experimental evidence. A deeper study of
photolysis mechanisms at the molecular level and
theoretical calculation can deeply wunderstand the
theoretical basis behind nitrate photolysis. It is necessary
to use advanced techniques (such as intermediate
measurements and surface science techniques) to further
research.

The specific contribution to unknown HONO and NO,
sources. The photolysis of nitrate can produce HONO
and NO, and has the potential to contribute to unknown
diurnal sources of HONO and NO,. However, the
contribution of nitrate photolysis to HONO and NO,
source has great uncertainty due to different
environmental conditions. The specific contribution of
nitrate photolysis to missing HONO and NO, sources in
the daytime is also unclear. It is still necessary to conduct
relevant experiments and further research with model
simulations.

Impact on regional atmospheric chemistry. Nitrate may
participate in other reaction processes during photolysis
and alter the atmospheric oxidative capacity. Long-
distance transmission and nighttime accumulation of
nitrate may change the regional atmospheric chemistry
and HONO-NO,, distribution during the day and night.
Besides, ozone pollution has become an important



14 Front. Environ. Sci. Eng. 2023, 17(4): 48

problem in China, and NO, produced by photolysis of
HNO./nitrate in the atmosphere is a key precursor of
ozone. Therefore, the effect of photolysis of HNO./nitrate
on ozone formation could be an important research issue
in the future.
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