Skip to main content
Log in

A comprehensive multimodal eye recognition

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Iris recognition is tested to be one of the most reliable approaches for automatic personal recognition under the infrared light. However, it is challenging and difficult to acquire good quality iris patterns of dark color eyes in the visible wavelengths. Sclera recognition can achieve good recognition accuracy in the visible spectrum, but the performance will drop when the sclera pattern is saturated. In this paper, we proposed a comprehensive multimodal eye recognition system that uses both iris and sclera patterns for recognition from the same eye image. The experimental results show that the proposed multimodal frontal eye recognition method can achieve better recognition accuracy than unimodal iris or sclera recognition. In addition, we propose a multimodal multi-angle eye recognition system that can further improve the recognition accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Jain, A.K., Ross, A., Pankanti, S.: Biometrics: a tool for information security. Inf. Forensic Secur. IEEE Trans. 1(2), 125–143 (2006). doi:10.1109/tifs.2006.873653

    Article  Google Scholar 

  2. Daugman, J.: How iris recognition works. Circuits Syst. Video Technol. IEEE Trans. 14(1), 21–30 (2004)

    Article  Google Scholar 

  3. Masek, L., Kovesi, P.: Matlab Source Code for a Biometric Identification System Based on Iris Patterns. The School of Computer Science and Software Engineering, The University of Western Australia, Australia (2003)

    Google Scholar 

  4. Proenca, H.: Iris recognition: on the segmentation of degraded images acquired in the visible wavelength. Pattern Anal. Mach. Intell. IEEE Trans. 32(8), 1502–1516 (2010)

    Article  Google Scholar 

  5. Proenca, H., Filipe, S., Santos, R., Oliveira, J., Alexandre, L.A.: The UBIRIS.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance. Pattern Anal. Mach. Intell. IEEE Trans. 32(8), 1529–1535 (2010)

    Article  Google Scholar 

  6. Zhou, Z., Du, E.Y., Thomas, N.L., Delp, E.J.: A new human identification method: sclera recognition. Syst. Man Cybern. A Syst. Hum. IEEE Trans. 42(3), 571–583 (2012). doi:10.1109/tsmca.2011.2170416

    Article  Google Scholar 

  7. Unsang, P., Jillela, R.R., Ross, A., Jain, A.K.: Periocular biometrics in the visible spectrum. Inf. Forensics Secur. IEEE Trans. 6(1), 96–106 (2011)

    Article  Google Scholar 

  8. Woodard, D.L., Pundlik, S., Miller, P., Jillela, R., Ross, A.: On the fusion of periocular and iris biometrics in non-ideal imagery. In: Pattern Recognition (ICPR), 2010 20th International Conference on, 23–26 Aug 2010, pp. 201–204

  9. Merkow, J., Jou, B., Savvides, M.: An exploration of gender identification using only the periocular region. In: Biometrics: Theory Applications and Systems (BTAS), 2010 Fourth IEEE International Conference on 27–29 Sept 2010, pp. 1–5

  10. Hollingsworth, K.P., Darnell, S.S., Miller, P.E., Woodard, D.L., Bowyer, K.W., Flynn, P.J.: Human and machine performance on periocular biometrics under near-infrared light and visible light. Inf. Forensics Secur. IEEE Trans. 7(2), 588–601 (2012). doi:10.1109/tifs.2011.2173932

    Article  Google Scholar 

  11. Oyster, C.W.: The Human Eye: Structure and Function. Sinauer Associates, Sunderland, Mass (1999)

    Google Scholar 

  12. Kaufman, P., Alm, A.: Adler’s Physiology of the Eye: Clinical Application. Mosby, St. Louis (2003)

    Google Scholar 

  13. Broekhuyse, R.: The lipid composition of aging sclera and cornea. Int. J. Ophthalmol. 171(1), 82–85 (1975)

    Article  Google Scholar 

  14. Kanai, A., Kaufman, H.: Electron microscopic studies of the elastic fiber in human sclera. Investig. Ophthalmol. Vis. Sci. 11(10), 816 (1972)

    Google Scholar 

  15. Vannas, S., Teir, H.: Observations on structures and age changes in the human sclera. Acta Ophthalmologica 38(3), 268–279 (2009)

    Article  Google Scholar 

  16. Weale, R.: The Aging Eye. Hoeber Medical Division, Harper and Row, New York (1963)

    Google Scholar 

  17. Crihalmeanu, S., Ross, A.: Multispectral scleral patterns for ocular biometric recognition. Pattern Recognit. Lett. 33(14), 1860–1869 (2012). doi:10.1016/j.patrec.2011.11.006

  18. Daugman, J.: New methods in iris recognition. Syst. Man Cybern. B IEEE Trans. 37(5), 1167–1175 (2007)

    Article  Google Scholar 

  19. Du, Y., Arslanturk, E., Zhou, Z., Belcher, C.: Video-based noncooperative iris image segmentation. Syst. Man Cybern. B Cybern. IEEE Trans. 41(1), 64–74 (2011)

    Google Scholar 

  20. Van Huan, N., Kim, H.: A novel circle detection method for iris segmentation. In: Image and Signal Processing, 2008. CISP ’08. Congress on 3, 620–624

  21. Tan, C., Kumar, A.: A unified framework for automated iris segmentation using distantly acquired face images. Image Process. IEEE Trans. PP(99), 1–1 (2012). doi:10.1109/tip.2012.2199125

  22. Abdullah-Al-Wadud, M., Oksam, C.: Region-of-interest selection for skin detection based applications. In: Convergence Information Technology, 2007. International Conference on 2007, pp. 1999–2004

  23. Abdullah-Al-Wadud, M., Chae, O.: Skin segmentation using color distance map and water-flow property. In: Information Assurance and Security. ISIAS ’08. Fourth International Conference on 2008, pp. 83–88

  24. Derakhshani, R., Ross, A., Crihalmeanu, S.: A new biometric modality based on conjunctival vasculature. In: Proc. of Artificial Neural Networks in Engineering (ANNIE) (2006)

  25. Du, Y., Belcher, C., Zhou, Z.: Scale invariant gabor descriptor-based noncooperative iris recognition. EURASIP J. Adv. Signal Process. 2010, 37 (2010)

    Google Scholar 

  26. Belcher, C., Du, Y.: Region-based SIFT approach to iris recognition. Opt. Lasers Eng. 47(1), 139–147 (2009)

    Article  Google Scholar 

  27. Yang, K., Du, E.Y.: Speed-up multi-stage non-cooperative iris recognition. Int. J. Biometrics 4(4), 406–421 (2012)

    Article  Google Scholar 

  28. Proença, H., Alexandre, L.A.: UBIRIS: a noisy iris image database. In: 13th International Conference on Image Analysis and Processing—ICIAP 2005 Springer LNCS 3617, pp. 970–977 (2005)

  29. Proenca, H., Alexandre, L.A.: Toward noncooperative iris recognition: a classification approach using multiple signatures. Pattern Anal. Mach. Intell. IEEE Trans. 29(4), 607–612 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Department of Computer Science at the University of Beira Interior for providing the UBIRIS database [5]. We would also like to thank the people who contributed their data for IUPUI multi-wavelength database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliza Y. Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Z., Du, E.Y., Thomas, N.L. et al. A comprehensive multimodal eye recognition. SIViP 7, 619–631 (2013). https://doi.org/10.1007/s11760-013-0468-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-013-0468-8

Keywords

Navigation