Skip to main content
Log in

Statistical behavior of edge detectors

  • Original paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper we present a method for estimating the statistical properties of two well-known edge detectors: the non maxima suppression and the zero crossing of the Laplacian algorithms. Assuming the data are corrupted by an additive Gaussian noise we derive the probability density function (pdf) of the detected edge. Thanks to this approach the computed pdf explicitly depends on the parameters of the edge detector. Experimental results on real images and comparisons with Monte Carlo simulations are presented in order to characterize the performance of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roberts, L.G.: Machine perception of three-dimensional solids. In: Optical and Electro-Optical Information Processing. MIT Press, Cambridge (1965)

  2. Sobel, I.: Camera models and machine perception. Standford AI MEMO 121, Dept. of Computer Science, Standford University (1970)

  3. Gonzalez R. and Woods R. (1992). Digital Image Processing. Addison-Wesley, New York

    Google Scholar 

  4. Canny J.F. (1986). A computational approach to edge detection. IEEE T. PAMI 8(6): 679–698

    Google Scholar 

  5. Deriche R. (1987). Using Canny’s criteria to derive a recursively implemented optimal edge detector. Int. J. Comp. Vision 1(2): 167–187

    Article  Google Scholar 

  6. Shen J. and Castan S. (1992). An optimal linear operator for step edge detection. Comp. Vision Graph. Image Process. 54(2): 112–133

    Google Scholar 

  7. Demigny D. (2002). An optimal linear filtering for edge detection. IEEE Trans. Image Process. 11(7): 728–737

    Article  Google Scholar 

  8. Rosenfeld A., Hummel R. and Zucker S. (1976). Scenes labelling by relaxation operation. IEEE Trans. Systems Man Cyber. 6(6): 420–453

    Article  MATH  MathSciNet  Google Scholar 

  9. Hancock E.R. and Kittler J. (1990). Edge-labeling using dictionary relaxation. IEEE Trans. PAMI 12: 165–181

    Google Scholar 

  10. Christmas W., Kittler J. and Petrou M. (1995). Structural matching in computer vision using probabilistic relaxation. IEEE Trans. PAMI 17: 749–764

    Google Scholar 

  11. Sitharama Iyengar S. and Deng W. (1995). An efficient edge detection algorithm using relaxation labeling technique. Pattern Recogn. 28(4): 519–536

    Article  Google Scholar 

  12. Papachistous P., Petrou M. and Kittler J. (2000). Edge postprocessing using probabilistic relaxation. IEEE Trans. Systems Man Cybern. B 30(3): 383–402

    Article  Google Scholar 

  13. Lyvers E.P. and Mitchell O.R. (1988). Precision edge contrast and orientation estimation. IEEE Trans. PAMI 10(6): 927–937

    Google Scholar 

  14. Marimont D.H., Rubner, Y.: A Probabilistic framework for edge detection and scale selection. In: Proc. of Sixth Int. Conf. Computer Vision, Bombay, pp. 207–214 (1998)

  15. Touzi R., Lopes A. and Bousquet P. (1988). A statistical and geometrical edge detector for SAR images. IEEE Trans. Geosci. Remote Sensing 26(6): 764–773

    Article  Google Scholar 

  16. Tupin F., Maître H., Mangin J.-F., Nicolas J.-M. and Pechersky E. (1998). Detection of linear features in SAR images: application to road network extraction. IEEE Trans. Geosci. Remote Sensing 36(2): 434–453

    Article  Google Scholar 

  17. Destrempes F. and Mignotte M. (2004). A statistical model for contours in images. IEEE Trans. PAMI 25(5): 626–640

    Google Scholar 

  18. Konishi S., Yuille A.L., Coughlan J.M. and Chun Zhu S. (2003). Statistical edge detection: learning and evaluating edge cues. IEEE Trans. PAMI 25(1): 57–74

    Google Scholar 

  19. Papoulis A. (1991). Probability, Random Variables and Stochastic Processes, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  20. Ramdani S., Bouchara F. and Djemal K. (2004). Probability distribution of sub-pixel edge position. Signal Process. 83(3): 445–452

    Article  Google Scholar 

  21. Genz A. (1992). Numerical computation of multivariate normal probabilities. J. Comput. Graph. Statist. 1(2): 141–149

    Article  Google Scholar 

  22. Sheil J. and O’Muircheartaigh I. (1977). Algorithm AS 106: the distribution of non-negative quadratic forms in normal variables. Appl. Statist. 26(1): 92–98

    Article  Google Scholar 

  23. Bouchara F. (2004). Efficient algorithm for the computation of the second order moment of the subpixel-edge position. Appl. Opt. 43(23): 4550–4558

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Bouchara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchara, F., Ramdani, S. Statistical behavior of edge detectors. SIViP 1, 273–285 (2007). https://doi.org/10.1007/s11760-007-0024-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-007-0024-5

Keywords

Navigation