Skip to main content
Log in

Single-Cell Oils as a Source of Omega-3 Fatty Acids: An Overview of Recent Advances

  • Review Article
  • Published:
Journal of the American Oil Chemists' Society

Abstract

Omega-3 fatty acids, namely docosahexaenoic acid and eicosapentaenoic acid, have been linked to several beneficial health effects (i.e. mitigation effects of hypertension, stroke, diabetes, osteoporosis, depression, schizophrenia, asthma, macular degeneration, rheumatoid arthritis, etc.). The main source of omega-3 fatty acids is fish oil; lately however, fish oil market prices have increased significantly. This has prompted a significant amount of research on the use of single-cell oils as a source of omega-3 fatty acids. Some of the microbes reported to produce edible oil that contains omega-3 fatty acids are from the genus Schizochytrium, Thraustochytrium and Ulkenia. An advantage of a single cell oil is that it usually contains a significant amount of natural antioxidants (i.e. carotenoids and tocopherols), which can protect omega-3 fatty acids from oxidation, hence making this oil less prone to oxidation than oils derived from plants and marine animals. Production yields of single cell oils and of omega-3 fatty acids vary with the microbe used, with the fermentative growing conditions, and extractive procedures employed to recover the oil. This paper presents an overview of recent advances, reported within the last 10 years, in the production of single cell oils rich in omega-3 fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Covington MB (2004) Omega-3 fatty acids. Am Fam Phys 70:133–140

    Google Scholar 

  2. Ho L, van Leeuwen R, Witteman JC, van Duijn CM, Uitterlinden AG, Hofman A, de Jong PT, Vingerling JR, Klaver CC (2011) Reducing the genetic risk of age-related macular degeneration with dietary antioxidants, zinc, and ω-3 fatty acids. Arch Ophthalmol 129:758–766

    Article  CAS  Google Scholar 

  3. Pase MP, Grima NA, Sarris J (2011) Do long-chain n-3 fatty acids reduce arterial stiffness? A meta-analysis of randomised controlled trials. Br J Nutr 106:974–980

    Article  CAS  Google Scholar 

  4. Kiecolt-Glaser JK, Belury MA, Andridge R, Malarkey WB, Glaser R (2011) Omega-3 supplementation lowers inflammation and anxiety in medical students: a randomized controlled trial. Brain Behav Immun 25:1725–1734

    Article  CAS  Google Scholar 

  5. Imhoff-Kunsch B, Stein AD, Martorell R, Parra-Cabrera S, Romieu I, Ramakrishnan U (2011) Prenatal docosahexaenoic acid supplementation and infant morbidity: randomized controlled trial. Pediatrics 128:505–512

    Google Scholar 

  6. Gray N (2011) Beyond the heart and brain: emerging benefits of omega-3. Available via Internet at http://www.nutraingredients-usa.com/Research/Beyond-the-heart-and-brain-Emerging-benefits-of-omega-3

  7. Lewis MD, Hibbeln JR, Johnson JE, Hong Lin Y, Hyun DY, Loewke JD (2011) Suicide deaths of active-duty US military and omega-3 fatty-acid status: a case-control comparison. J Clin Psychiatry 72:1585–1590

    Article  CAS  Google Scholar 

  8. Singh A, Nigam PS, Murphy JD (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour Tech 102:10–16

    Article  CAS  Google Scholar 

  9. Meireles LA, Guedes AC, Malcata FX (2003) Increase of the yields of eicosapentaenoic and docosahexaenoic acids by the microalga Pavlova lutheri following random mutagenesis. Biotechnol Bioeng 81:50–55

    Article  CAS  Google Scholar 

  10. Sakarudani E, Abe T, Shimizu S (2008) Identification of mutation sites on omega-3 desaturase genes from Mortierella alpina IS-4 mutants. J Biosci Bioeng 107:7–9

    Article  CAS  Google Scholar 

  11. Jiang Y, Chen F (2000) Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalgae Crypthecodinium cohnii. J Am Oil Chem Soc 77:613–617

    Article  CAS  Google Scholar 

  12. Liu CP, Lin LP (2005) Morphology and eicosapentaenoic acid production by Monodus subterraneus UTEX 151. Micron 36:545–550

    Article  CAS  Google Scholar 

  13. Athayle SK, Garcia RA, Wen Z (2009) Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. J Agric Food Chem 57:2739–2744

    Article  CAS  Google Scholar 

  14. Garcia MCC, Miron S, Sevilla JMF, Grima EM, Camacho FG (2005) Mixotrophic growth of the microalga Phaeodactylum tricornutum: influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem 40:297–305

    Article  CAS  Google Scholar 

  15. Wen Z, Chen F (2000) Production potential of eicosapentaenoic acid by the diatom Nitzschia laevis. Biotechnol Lett 22:727–733

    Article  CAS  Google Scholar 

  16. Perveen Z, Ando H, Ueno A, Ito Y, Yamamoto Y, Yamada Y, Takagi T, Kaneko T, Kogame K, Okuyama H (2006) Isolation and characterization of a novel thraustochytrid-like microorganism that efficiently produces docosahexaenoic acid. Biotechnol Lett 28:197–202

    Article  CAS  Google Scholar 

  17. Lian M, Huang H, Ren L, Ji X, Zhu J, Jin L (2010) Increase of docosahexaenoic acid production by Schizochytrium sp. through mutagenesis and enzyme assay. Appl Biochem Biotechnol 162:935–941

    Article  CAS  Google Scholar 

  18. Yang HL, Lu CK, Chen SF, Chen YM, Chen YM (2009) Isolation and characterization of Taiwanese heterotrophic microalgae: screening of strains for docosahexaenoic acid (DHA) production. Mar Biotechnol 12:173–185

    Article  CAS  Google Scholar 

  19. Kim HJ, Park S, Lee JM, Park S, Jung W, Kang JS, Joo HM, Seo KW, Kang SH (2008) Moritella dasanensis sp. nov., a psychrophilic bacterium isolated from the Arctic Ocean. Int J Syst Evol Microbiol 58:817–820

    Article  CAS  Google Scholar 

  20. Lee WH, Cho KW, Park SY, Shin KS, Lee DS, Hwang SK, Seo SJ, Kim JM, Ghim SY, Song BH, Lee SH, Kim JG (2008) Identification of psychrophile Shewanella sp. KMG427 as an eicosapentaenoic acid producer. J Microbiol Biotechnol 18:1869–1873

    CAS  Google Scholar 

  21. Ratledge C (1976) Microbial production of oils and fats. In: Birch GG, Parker KJ, Worgan JT (eds) Food from waste. Applied Science Publishers, London, pp 98–113

    Google Scholar 

  22. Ratledge C (2010) Single cell oils for the 21st century. In: Cohen Z, Ratledge C (eds) Single cell oils, microbial and algal oils, 2nd edn. AOCS Press, Urbana, pp 3–26

    Google Scholar 

  23. Barclay W, Weaver C, Metz J, Hansen J (2010) Development of a docosahexaenoic acid production technology using Schizochytrium: historical perspective and update. In: Cohen Z, Ratledge C (eds) Single cell oils, microbial and algal oils, 2nd edn. AOCS Press, Urbana, pp 75–96

    Google Scholar 

  24. Zhu Q, Xue Z, Yadav N, Damude H, Walters-Pollak D, Rupert R, Seip J, Hollerback D, Macool D, Zhang H, Bledsoe S, Short D, Tyerus B, Kinney A, Picataggio S (2010) Metabolic engineering of an oleaginous yeast for the production of omega-3 fatty acids. In: Cohen Z, Ratledge C (eds) Single cell oils, microbial and algal oils, 2nd edn. AOCS Press, Urbana, pp 51–71

    Google Scholar 

  25. Burja AM, Radianingtyas H, Windust A, Barrow CJ (2006) Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl Microbiol Biotechnol 72:1161–1169

    Article  CAS  Google Scholar 

  26. Armenta RE, Burja A, Radianingtyas H, Barrow CJ (2006) Critical assessment of various techniques for the extraction of carotenoids and co-enzyme Q10 from the thraustochytrid strain ONC-T18. J Agric Food Chem 54:9752–9758

    Article  CAS  Google Scholar 

  27. Scott S, Armenta RE, Berryman K, Norman A (2011) Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a thraustochytrid. Enzyme Microb Technol 48:267–272

    Article  CAS  Google Scholar 

  28. Burja AM, Armenta RE, Radianingtyas H, Barrow CJ (2007) Evaluation of fatty acid extraction methods for Thraustochytrium sp. ONC-T18. J Agric Food Chem 55:4795–4801

    Article  CAS  Google Scholar 

  29. Porter D (1989) Phylum Labyrinthulomycota. In: Margulis L, Corliss JO, Melkonian M, Chapman DJ (eds) Handbook of protoctista. Jones and Bartlett, Boston, pp 388–398

    Google Scholar 

  30. Honda D, Yokochi T, Nakahara T, Erata M, Higashihara T (1998) Schizochytrium limacinum sp., nov., a new thraustochytrid from a mangrove area in the west Pacific Ocean. Mycol Res 102:439–448

    Article  Google Scholar 

  31. Yokoyama R, Honda D (2007) Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience 48:199–211

    Article  CAS  Google Scholar 

  32. Ratledge C (1988) Biochemistry, stoichiometry, substrates and economics. In: Moreton RS (ed) Single cell oil. Longman Scientific & Technical, Harlow, pp 33–70

    Google Scholar 

  33. Ruan Z, Zanotti M, Wang X, Ducey C, Liu Y (2012) Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour Technol 110:198–205

    Article  CAS  Google Scholar 

  34. Jiang Y, Chen F (2000) Effects of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. J Am Oil Chem Soc 35:1205–1209

    CAS  Google Scholar 

  35. Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42:1537–1545

    Article  CAS  Google Scholar 

  36. Pyle D, Garcia R, Wen Z (2008) Producing docosahexaenoic acid (DHA)-rich algae from biodiesel derived-crude glycerol: effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56:3933–3939

    Article  CAS  Google Scholar 

  37. Mendes A, Guerra P, Madeira V, Ruano F, da Silva TL, Reis A (2007) Study of docosahexaenoic acid production by the heterotrophic microalga Crypthecodinium cohnii CCMP 316 using carob pulp as a promising carbon source. World J Microbiol Biotechnol 23:1209–1215

    Article  CAS  Google Scholar 

  38. Quilodrán B, Hinzpeter I, Hormazabal E, Quiroz A, Shene C (2010) Docosahexaenoic acid (C22:6n–3, DHA) and astaxanthin production by Thraustochytriidae sp. AS4-A1 a native strain with high similitude to Ulkenia sp.: evaluation of liquid residues from food industry as nutrient sources. Enzyme Microbiol Technol 47:24–30

    Article  CAS  Google Scholar 

  39. Zhao CH, Zhang T, Li M, Chi ZM (2010) Single cell oil production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. Process Biochem 45:1121–1126

    Article  CAS  Google Scholar 

  40. Liang Y, Zhao X, Strait M, Wen Z (2012) Use of dry-milling derived thin stillage for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. Bioresour Technol. doi:10.1016/j.biortech.2012.02.035

    Google Scholar 

  41. Kumon Y, Yokoyama R, Haque Z, Yokochi T, Honda D, Nakahara T (2006) A new labyrinthulid isolate that produces only docosahexaenoic acid. Mar Biotechnol 8:170–177

    Article  CAS  Google Scholar 

  42. Kumon Y, Yokochi T, Nakahara T, Yamaoka M, Mito K (2002) Production of long-chain polyunsaturated fatty acids by monoxenic growth of labyrinthulids on oil-dispersed agar medium. Appl Microbiol Biotechnol 60:275–280

    Article  CAS  Google Scholar 

  43. Hong WK, Rairakhwada D, Seo PS, Park SY, Hur BK, Kim CH, Seo JW (2011) Production of lipids containing high levels of docosahexaenoic acid by a newly isolated microalga, Aurantiochytrium sp. KRS101. App Biochem Biotechnol 164:1468–1480

    Article  CAS  Google Scholar 

  44. Chi Z, Zheng Y, Jiang A, Chen S (2011) Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. App Biochem Biotechnol 165:442–453

    Article  CAS  Google Scholar 

  45. Lee KS, Hong ME, Jung SC, Ha SJ, Yu BJ, Koo HM, Park SM, Seo JH, Kweon DH, Park JC, Jin YS (2010) Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering. Biotechnol Bioeng 108:621–631

    Article  CAS  Google Scholar 

  46. Wen ZY, Chen F (2003) Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol Adv 21:273–294

    Article  CAS  Google Scholar 

  47. Wen Z, Chen F (2001) Optimization of nitrogen sources for heterotrophic production of eicosapentaenoic acid by the diatom Nitzschia laevis. Enzym Microb Technol 29:341–347

    Article  CAS  Google Scholar 

  48. Hwang BH, Kim JW, Park CY, Park CS, Kim YS, Ryu YW (2005) High-level production of arachidonic acid by fed-batch culture of Mortierella alpina using NH4OH as a nitrogen source and pH control. Biotechnol Lett 27:731–735

    Article  CAS  Google Scholar 

  49. Liang Y, Garcia R, Piazza G, Wen Z (2011) Nonfeed application of rendered animal proteins for microbial production of eicosapentaenoic acid by the fungus Pythium irregulare. J Agric Food Chem 59:11990–11996

    Article  CAS  Google Scholar 

  50. Chi Z, Lin Y, Frear C, Chen S (2008) Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl Microbiol Biotechnol 81:1141–1148

    Article  CAS  Google Scholar 

  51. Uzuka Y, Naganuma T, Tanaka K, Suzuki K (1985) Relation between neutral lipid-accumulation and the growth-phase in the yeast, Lipomyces starkeyi, a fat producing yeast. Agric Biol Chem 49:851–852

    Article  CAS  Google Scholar 

  52. Ratledge C (1981) Yeast and mould as sources of oils and fats. In: Pryde EH, Princen LH, Mukherjee KD (eds) New sources of fats and oils. AOCS Press, Champaign, pp 159–169

    Google Scholar 

  53. Wen Z, Jiang Y, Chen F (2002) High cell density of the diatom Nitzschia laevis for eicosapentaenoic acid production: fed-batch development. Proc Biochem 37:1447–1453

    Article  CAS  Google Scholar 

  54. Wen Z, Chen F (2002) Continuous cultivation of the diatom Nitzschia laevis for eicosapentaenoic acid production: physiological study and process optimization. Biotechnol Prog 18:21–28

    Article  CAS  Google Scholar 

  55. Barclay W, Weaver C, Metz J (2005) Development of a docosahexaenoic acid production technology suing Schizochytrium: a historical perspective. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS Press, Urbana, pp 36–52

    Google Scholar 

  56. Waites MJ, Morgan NL, Rockey JS, Higton G (2001) Industrial microbiology: an introduction. Blackwell, Oxford

    Google Scholar 

  57. Ratledge C, Hall M (1977) Oxygen demand by lipid-accumulating yeast in continuous culture. Appl Environ Microbiol 34:230–231

    CAS  Google Scholar 

  58. Fakas S, Papanikolau S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioeng 33:573–580

    Article  CAS  Google Scholar 

  59. Croft MT, Warren MJ, Smith AG (2006) Algae need their vitamins. Eukaryot Cell 5:1175–1183

    Article  CAS  Google Scholar 

  60. Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE, Smith AG (2011) Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. Mol Biol Evol 28:2921–2933

    Article  CAS  Google Scholar 

  61. Sakuradani E, Shimizu S (2009) Single cell oil production by Mortierella alpina. J Biotechnol 144:31–36

    Article  CAS  Google Scholar 

  62. Siegenthaler PA, Belsky MM, Goldstein S (1967) Phosphate uptake in an obligately marine fungus: a specific requirement for sodium. Science 155:93–94

    Article  CAS  Google Scholar 

  63. Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10:631–640

    Article  CAS  Google Scholar 

  64. Hur B, Cho D, Kim H, Park C, Suh H (2002) Effect of culture conditions on growth and production of docosahexaenoic acid (DHA) using Thraustochytrium aureum ATCC 34304. Biotechnol Bioprocess Eng 7:10–15

    Article  CAS  Google Scholar 

  65. Wen Z, Chen F (2001) Application of statistically-based experimental designs for the optimization of eicosapentaenoic acid production by the diatom Nitzschia laevis. Biotechnol Bioeng 75:159–169

    Article  CAS  Google Scholar 

  66. Shabala L, McMeekin T, Shabala S (2009) Osmotic adjustment and requirement for sodium in marine protist thraustochytrid. Environ Microbiol 11:1835–1843

    Article  CAS  Google Scholar 

  67. Chen G, Chen F (2006) Growing phototrophic cells without light. Biotechnol Lett 28:607–616

    Article  CAS  Google Scholar 

  68. Sakata T, Fujisawa T, Yoshikawa T (2000) Colony formation and fatty acid composition of marine labyrinthulid isolates grown on agar media. Fish Sci 66:84–90

    Article  CAS  Google Scholar 

  69. Yamaoka Y, Carmona ML, Oota S (2004) Growth and carotenoid production of Thraustochytrium sp. CHN-1 cultured under superbright red and blue light-emitting diodes. Biosci Biotechnol Biochem 68:1594–1597

    Article  CAS  Google Scholar 

  70. Shen Y, Pei Z, Yuan W, Mao E (2009) Effect of nitrogen and extraction method on algae lipid yield. Int J Agric Biol Eng 2:51–57

    CAS  Google Scholar 

  71. Cooney M, Young G, Nagle N (2009) Extraction of bio-oils from microalgae. Sep Purif Rev 38:291–325

    Article  CAS  Google Scholar 

  72. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–927

    Article  CAS  Google Scholar 

  73. Zhu M, Zhou PP, Yu LJ (2002) Extraction of lipids from Mortierella alpina and enrichment of arachidonic acid from the fungal lipids. Bioresour Tech 84:93–95

    Article  CAS  Google Scholar 

  74. Belarbi EH, Molina E, Chisti Y (2000) A process for high yield and scalable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme Microb Technol 26:516–529

    Article  CAS  Google Scholar 

  75. Ranjan A, Patil C, Moholkar VS (2010) Mechanistic assessment of microalgal lipid extraction. Ind Eng Chem Res 49:2979–2985

    Article  CAS  Google Scholar 

  76. Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, Omar AKM (2009) Application of super critical CO2 in lipid extraction—a review. J Food Eng 95:240–253

    Article  CAS  Google Scholar 

  77. Catchpole O, Ryan J, Zhu Y, Fenton K, Grey J, Vyssotski M, MacKenzie A, Nekrasov E, Mitchell K (2010) Extraction of lipids from fermentation biomass using near-critical dimethylether. J Supercrit Fluids 53:34–41

    Article  CAS  Google Scholar 

  78. Andrich G, Zinnai A, Nesti U, Venturi F, Fiorentini R (2006) Supercritical fluid extraction of oil from microalga Spirulina (Arthrospira) platensis. Acta Aliment 35:195–203

    Article  CAS  Google Scholar 

  79. Couto RM, Simoes PC, Reis A, Da Silva TL, Martins VH, Sanchez-Vicente Y (2010) Super critical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii. Eng Life Sci 10:158–164

    CAS  Google Scholar 

  80. Chen C, Chou H (2002) Screening of red algae filaments as a potential alternative source of eicosapentaenoic acid. Mar Biotechnol 4:189–192

    Article  CAS  Google Scholar 

  81. Mercer P, Armenta RE (2011) Developments in oil extraction from microalgae. Eur J Lipid Sci Technol 113:539–547

    Article  CAS  Google Scholar 

  82. Bailey JE (1991) Toward a science of metabolic engineering. Science 252:1668–1675

    Article  CAS  Google Scholar 

  83. Yang Y, Bennett GN, San K (1998) Genetic and metabolic engineering. Electron J Biotechnol 1:134–141

    Article  Google Scholar 

  84. Sakuradani E, Ando A, Ogawa J, Shimizu S (2009) Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding. Appl Microbiol Biotechnol 84:1–10

    Article  CAS  Google Scholar 

  85. Tessman I, Poddar RK, Kumar S (1964) Identification of the altered bases in mutated single-stranded DNA I. in vitro mutagenesis by hydroxylamine, ethyl methane sulfonate and nitrous acid. J Mol Biol 9:352–363

    Article  CAS  Google Scholar 

  86. Ravanat J, Douki T, Cadet J (2001) Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B Biol 63:88–102

    Article  CAS  Google Scholar 

  87. Chatuverdi R, Uppalapati SR, Alamsjah MA, Fujita Y (2004) Isolation of quizalofop-resistant mutants of Nannochloropsis oculata (Eustigmatophyceae) with high eicosapentaenoic acid following N-methyl-N-nitrosourea-induced random mutagenesis. J App Phycol 16:135–144

    Article  Google Scholar 

  88. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  CAS  Google Scholar 

  89. Metz J, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Kanuf V, Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  CAS  Google Scholar 

  90. Yazawa K (1996) Production of eicosapentaenoic acid from marine bacteria. Lipids 31:297–300

    Article  Google Scholar 

  91. DeLong EF, Yayanos AA (1986) Biochemical function and ecological significance of novel bacterial lipids in deep-sea prokaryotes. Appl Environ Microbiol 51:730–737

    CAS  Google Scholar 

  92. Zhang Y, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayre SB (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415:644–646

    Article  CAS  Google Scholar 

  93. Peberdy JF (1980) Protoplast fusion—a tool for genetic manipulation and breeding in industrial microorganisms. Enzyme Microb Technol 2:23–29

    Article  CAS  Google Scholar 

  94. Zhao M, Dai C, Guan X, Tao J (2009) Genome shuffling amplifies the carbon source spectrum and improves arachidonic acid production in Diasporangium sp. Enzyme Microb Technol 45:419–425

    Article  CAS  Google Scholar 

  95. Yu R, Yamada A, Watanbe K, Yazawa K, Takeyama H, Matsunaga T, Kurane R (2000) Production of eicosapentaenoic acid by a recombinant marine cyanobacterium, Synechococcus sp. Lipids 35:1061–1064

    Article  CAS  Google Scholar 

  96. Tavares S, Grotkjær T, Obsen T, Haslam RP, Napier JA, Gunnarsson N (2011) Metabolic engineering of Saccharomyces cerevisiae for production of eicosapentaenoic acid, using a novel Δ5-desaturase from Paramecium tetraurelia. App Environ Microbiol 77:1854–1861

    Article  CAS  Google Scholar 

  97. Michinaka Y, Shimauchi T, Aki T, Nakajima T, Kawamoto S, Shigeta S, Suzuki O, Ono K (2003) Extracellular secretion of free fatty acids by disruption of a fatty acyl-CoA synthetase gene in Saccharomyces cerevisiae. J Biosci Bioeng 95:435–440

    CAS  Google Scholar 

  98. Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562

    Article  CAS  Google Scholar 

  99. Ribeiro G, Corte-Real M, Johansson B (2010) Engineering of fatty acid production and secretion in Saccharomyces cerevisiae. In: FEBS workshop microbial lipids: from genomics to lipidomics, European Federation for the Science and Technology of Lipids, Vienna, Austria

  100. Ryan J, Farr H, Visnovsky S, Vyssotsky M, Visnovsky G (2010) A rapid method for the isolation of eicosapentaenoic acid-producing marine bacteria. J Micobiol Method 82:49–53

    Article  CAS  Google Scholar 

  101. Bigelow N, Hardin W, Barker JP, Ryken SA, MacRae AC, Cattolico RA (2011) A comprehensive GC–MS sub-microscale assay for fatty acids and its applications. J Am Chem Soc 88:1329–1338

    CAS  Google Scholar 

  102. Tang G, Suter PM (2011) Vitamin A, nutrition, and health values of algae, Chlorella and Dunaliella. J Pharm Nutr Sci 1:111–118

    Article  CAS  Google Scholar 

  103. Szabo NJ, Matulka RA, Kiss L, Licari P (2012) Safety evaluation of a high lipid whole algalin flour (WAF) from Chlorella protothecoides. Regul Toxicol Pharmacol 63:155–165

    Article  Google Scholar 

  104. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable sources. Prog Energy Combust Sci 37:52–68

    Article  CAS  Google Scholar 

  105. Eckardt NA (2010) The Chlorella genome: big surprises from a small package. Plant Cell 22:2924

    Article  CAS  Google Scholar 

  106. Genetic sequencing of Botryococcus braunii underway. Biofuels seminar. Available via Internet at http://owubiofuels.wordpress.com/2010/03/20/genetic-sequencing-of-botryococcus-braunii-underway/

  107. Ioki M, Baba M, Nakajima N, Shiraiwa Y, Watanabe MM (2012) Transcriptome analysis of an oil-rich race B strain of Botryococcus braunii (BOT-70) by the novo assembly of 5′-end sequences of full-length cDNA clones. Bioresour Technol 109:277–281

    Article  CAS  Google Scholar 

  108. Gupta A, Barrow CJ, Puri M (2012) Omega-3 biotechnology: thraustochytrids as a novel source of omega-3 oils. Biotechnol Adv. doi:10.1016/j.biotechadv.2012.02.014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto E. Armenta.

About this article

Cite this article

Armenta, R.E., Valentine, M.C. Single-Cell Oils as a Source of Omega-3 Fatty Acids: An Overview of Recent Advances. J Am Oil Chem Soc 90, 167–182 (2013). https://doi.org/10.1007/s11746-012-2154-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11746-012-2154-3

Keywords

Navigation