Skip to main content
Log in

Serum 2-Methoxyestradiol, an Estrogen Metabolite, is Positively Associated with Serum HDL-C in a Population-Based Sample

  • Communication
  • Published:
Lipids

Abstract

Serum HDL cholesterol (HDL-C) is inversely associated with coronary artery disease, ischemic stroke, and atherosclerosis in men and women. Among postmenopausal women, oral conjugated equine estrogen (CEE) increases serum HDL-C. This is due to activation of hepatic nuclear estrogen receptors, resulting in increased HDL-C expression, as well as modulation of proteins which metabolize HDL-C. 2-methoxyestradiol (2-MeOE2), an estrogen metabolite, has several vasculoprotective effects and may play a role in HDL-C production. 2-MeOE2 inhibits HMG-CoA reductase in vitro but no study has examined the relationship between serum 2-MeOE2 and serum HDL-C. A population-based sample provided information regarding demographic characteristics and use of antihyperlipidemic medications. Serum was analyzed for 17β-estradiol (E2), estrogen metabolites (EMs), and lipoproteins. Results included serum EM data from 51 men and 47 postmenopausal women. Preliminary analysis revealed no correlation between 2-MeOE2 and serum HDL-C in men so the current analysis includes only women (N = 40) with no missing demographic, medication, EM, or lipoprotein data. Linear regression revealed that serum 2-MeOE2 and antihyperlipidemic medications were positively associated with serum HDL-C (β = 0.276, P = 0.043, and β = 0.307, P = 0.047, respectively) when age, race/ethnicity, and body mass index were held constant. Prospective studies are needed to determine if 2-MeOE2 is causally related to HDL-C in women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

Apo A–I:

Apoliprotein A–I

CEE:

Conjugated equine estrogen

E2:

17β-Estradiol

EM:

Estrogen metabolites

ER:

Estrogen receptor

HDL-C:

High density lipoprotein cholesterol

HL:

Hepatic lipase

HMG-CoA:

3-Hydroxy-3methylglutaryl-CoA

HRT:

Hormone replacement therapy

LC–MS/MS:

Liquid chromatography–tandem mass spectrometry

LDL-C:

Low density lipoprotein cholesterol

ln:

Natural log

2-MeOE2:

2-Methoxyestradiol

MI:

Myocardial infarction

SR-BI:

Scavenger receptor class B type I

WHI:

Women’s Health Initiative

References

  1. Ballantyne CM, Herd JA, Ferlic LL, Dunn K, Farmer JA et al (1999) Influence of low HDL on progression of coronary artery disease and response to fluvastatin therapy. Circulation 99:736–743

    PubMed  CAS  Google Scholar 

  2. Sanossian N, Tarlov NE (2008) HDL-C and LDL-C: their role in stroke pathogenesis and implications for treatment. Curr Treat Options Cardiovasc Med 10:195–206

    Article  PubMed  Google Scholar 

  3. Feig JE, Shamir R, Fisher EA (2008) Atheroprotective effects of HDL: beyond reverse cholesterol transport. Curr Drug Targets 9:196–203

    Article  PubMed  CAS  Google Scholar 

  4. Nofer JR, Walter M, Assmann G (2005) Current understanding of the role of high-density lipoprotein in atherosclerosis and senescence. Expert Rev Cardiovasc Ther 3:1071–1086

    Article  PubMed  CAS  Google Scholar 

  5. Gardner C, Tribble DL, Rohm Young D, Ahn D, Fortmann SP (2000) Population frequency distributions of HDL, HDL2, and HDL3 cholesterol and apolipoproteins A-1 and B in healthy men and women and associations with age, gender, hormonal status, and sex hormone use: The Stanford Five City Project. Prev Med 31:335–345

    Article  PubMed  CAS  Google Scholar 

  6. Bello N, Mosca L (2004) Epidemiology of coronary heart disease in women. Prog Cardiovasc Dis 46:287–295

    Article  PubMed  Google Scholar 

  7. LaCroix AZ, Chlebowski RT, Manson JE, Aragaki AK, Johnson KC et al (2011) Health outcomes after stopping conjugated equine estrogens among postmenopausal women with prior hysterectomy: a randomized controlled trial. JAMA 305:1305–1314

    Article  PubMed  CAS  Google Scholar 

  8. Krauss RM, Lindgren FT, Wingerd J, Bradley DD, Ramcharan S (1979) Effects of estrogens and progestins on high density lipoproteins. Lipids 14:113–118

    Article  PubMed  CAS  Google Scholar 

  9. Lamon-Fava S, Micherone D (2004) Regulation of apoA-1 gene expression: mechanism of action of estrogen and genistein. J Lipid Res 45:106–112

    Article  PubMed  CAS  Google Scholar 

  10. Walsh BW, Li H, Sacks FM (1994) Effects of postmenopausal hormone replacement with oral and transdermal estrogen on high density lipoprotein metabolism. J Lipid Res 35:2083–2093

    PubMed  CAS  Google Scholar 

  11. Bhavnani BR (2003) Estrogens and menopause: pharmacology of conjugated equine estrogens and their potential role in the prevention of neurodegenerative diseases such as Alzheimer’s. J Steroid Biochem Mol Biol 85:473–482

    Article  PubMed  CAS  Google Scholar 

  12. Lamon-Fava S, Postfai B, Diffenderfer M, DeLuca C, O’Connor J et al (2006) Role of the estrogen and progestin in hormonal replacement therapy on apolipoprotein A-1 kinetics in postmenopausal women. Arterioscler Thromb Vasc Biol 26:385–391

    Article  PubMed  CAS  Google Scholar 

  13. Lopez D, Sanchez MD, Shea-Eaton W, McLean MP (2002) Estrogen activates the high-density lipoprotein receptor gene via binding to estrogen response elements and interaction with sterol regulatory element binding protein-1A. Endocrinology 143:2155–2168

    Article  PubMed  CAS  Google Scholar 

  14. Jones DR, Schmidt RJ, Pickard RT, Foxworthy PS, Eacho PI (2002) Estrogen receptor-mediated repression of human hepatic lipase gene transcription. J Lipid Res 43:383–391

    PubMed  CAS  Google Scholar 

  15. Brinton EA, Eisenberg S, Breslow JL (1991) Increased apo A-I and apo A-II fractional catabolic rate in patients with low high density lipoprotein-cholesterol levels with or without hypertriglyceridemia. J Clin Invest 87:536–544

    Article  PubMed  CAS  Google Scholar 

  16. Staels B, Jansen H, van Tol A, Stahnke G, Will H et al (1990) Development, food intake, and ethinylestradiol influence hepatic triglyceride lipase and LDL-receptor mRNA levels in rats. J Lipid Res 31:1211–1218

    PubMed  CAS  Google Scholar 

  17. Acton S, Rigotti A, Landshulz KT, Xu S, Hobbs HH et al (1996) Identification of scavenger receptor SR-BI as a high-density lipoprotein receptor. Science 271:1518–1520

    Article  Google Scholar 

  18. Jian B, de la Llera-Moya M, Ji Y, Wang N, Phillips MC et al (1998) Scavenger receptor class B type I as a mediator of cellular cholesterol efflux to lipoproteins and phospholipid acceptors. J Biol Chem 271:518–520

    Google Scholar 

  19. Dubey RK, Tofovic SP, Jackson EK (2004) Cardiovascular pharmacology of estradiol metabolites. J Pharmacol Exp Ther 308:403–409

    Article  PubMed  CAS  Google Scholar 

  20. Liu D, Bachman KA (1998) An investigation of the relationship between estrogen, estrogen metabolites and blood cholesterol levels in ovariectomized rats. J Pharmacol Exp Ther 286:561–568

    PubMed  CAS  Google Scholar 

  21. Tofovic S, Dubey RK, Jackson EK (2001) 2-Hydroxyestradiol attenuates the development of obesity, the metabolic syndrome, and vascular and renal dysfunction in obese ZSF1 rats. J Pharmacol Exp Ther 299:973–977

    PubMed  CAS  Google Scholar 

  22. Bourghart J, Bergstrom G, Krettek A, Sjoberg S, Boren J et al (2007) The endogenous estradiol metabolite 2-methoxyestradiol reduces atherosclerotic lesion formation in female apolipoprotein E-deficient mice. Endocrinology 9:4128–4132

    Article  Google Scholar 

  23. Barchiesi F, Lucchinetti E, Zaugg M, Ogunshola O, Wright M et al (2010) Candidate genes and mechanisms for 2-methoxyestradiol-mediated vasoprotection. Hypertension 56:964–972

    Article  PubMed  CAS  Google Scholar 

  24. Hamilton VH, Racicot FE, Zowall H, Coupal L, Grover SA (1995) The cost-effectiveness of HMG-CoA reductase inhibitors to prevent coronary artery disease: estimating the benefits of increasing HDL-C. JAMA 273:1032–1038

    Article  PubMed  CAS  Google Scholar 

  25. Zhu BT, Conney AH (1998) Functional role of estrogen metabolism in target cells: a review and perspectives. Carcinogenesis 19:1–27

    Article  PubMed  Google Scholar 

  26. Xu X, Roman JM, Issaq HJ, Keefer LK, Veenstra TD et al (2007) Quantitative measurement of endogenous estrogens and estrogen metabolites in human serum by liquid chromatography–tandem mass spectrometry. Anal Chem 79:7813–7821

    Article  PubMed  CAS  Google Scholar 

  27. Masi CM, Hawkley LC, Xu X, Veenstra TD, Cacioppo JT (2009) Serum estrogen metabolites and systolic blood pressure among middle-aged and older women and men. Am J Hypertens 22:1148–1153

    Article  PubMed  CAS  Google Scholar 

  28. Walsh BW, Spiegelman D, Morrissey M, Sacks FM (1999) Relationship between serum estradiol levels and the increases in high-density lipoprotein levels in postmenopausal women treated with oral estradiol. J Clin Endocriol Metab 84:985–989

    Article  CAS  Google Scholar 

  29. Semmens J, Rouse I, Beilin LJ, Masarei JRL (1983) Relationship of plasma HDL-cholesterol to testosterone, estradiol, and sex-hormone-binding globulin levels in men and women. Metabolism 32:428–432

    Article  PubMed  CAS  Google Scholar 

  30. Mueck AO, Seeger H, Lippert TH (2002) Estradiol metabolism and malignant disease. Maturitas 43:1–10

    Article  PubMed  CAS  Google Scholar 

  31. Dubey RK, Jackson EK (2009) Potential vascular actions of 2-methoxyestradiol. Trends Endocrinol Metab 20:374–379

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Institute on Aging Career Development K08 Award (AG027200, C.M. Masi, PI), a National Institute on Aging R01 Award (AG036433, L.C. Hawkley, PI), and a National Institute on Aging R01 Award (AG034052, J.T. Cacioppo, PI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Masi.

About this article

Cite this article

Masi, C.M., Hawkley, L.C. & Cacioppo, J.T. Serum 2-Methoxyestradiol, an Estrogen Metabolite, is Positively Associated with Serum HDL-C in a Population-Based Sample. Lipids 47, 35–38 (2012). https://doi.org/10.1007/s11745-011-3600-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3600-y

Keywords

Navigation