Skip to main content
Log in

Temporary Increase of PPAR-γ and Transient Expression of UCP-1 in Stromal Vascular Fraction Isolated Human Adipocyte Derived Stem Cells During Adipogenesis

  • Original Article
  • Published:
Lipids

Abstract

In this study, cells from the stromal vascular fraction of human subcutaneous tissues were induced to differentiate toward adipose cells in vitro for 2 weeks. During adipogenic differentiation, we followed the chronological changes in their morphology with Coherent anti-Stokes Raman scattering (CARS) microscopy and checked the PPAR-γ and UCP-1 expression with RT-PCR. On day 4 after inducing adipogenic differentiation, CARS imaging showed multiple small lipid droplets (LD) distributed peripherally along the cellular membrane. PPAR-γ began to express at this time and increased until day 14 at a steady rate. On day 7, the cells appeared as brown adipocytes with numerous small LD throughout the cytoplasm, and the mRNA level of UCP-1 rose abruptly by 6- to 7-fold. After an additional 7 days, CARS imaging showed the development of a large LD, which is characteristic of white adipocytes, and the mRNA level of UCP-1 slumped significantly. These results demonstrate the possibility that ADSC pass through a brown adipocyte-like stage while differentiating into white adipocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADSC:

Adipose-derived stem cell

BAT:

Brown adipose tissue

CARS:

Coherent anti-Stokes Raman scattering

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

IBMX:

Isobutyl-methylxanthine

LD:

Lipid droplet

PBS:

Phosphate-buffered saline

PPAR-γ:

Peroxisome proliferator-activated receptor-γ

SVF:

Stromal vascular fraction

UCP-1:

Mitochondria-uncoupling protein-1

WAT:

White adipose tissue

References

  1. Avram A, Avram M, James W (2005) Subcutaneous fat in normal and diseased states: 2. Anatomy and physiology of white and brown adipose tissue. J Am Acad Dermatol 53:671–683

    Article  PubMed  Google Scholar 

  2. Ramsay T (1996) Fat cells. Endocrinol Metab Clin North Am 25:847–870

    Article  PubMed  CAS  Google Scholar 

  3. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  PubMed  CAS  Google Scholar 

  4. Jacobsson A, Stadler U, Glotzer MA, Kozak LP (1985) Mitochondrial uncoupling protein from mouse brown fat. Molecular cloning, genetic mapping, and mRNA expression. J Biol Chem 260:16250–16254

    PubMed  CAS  Google Scholar 

  5. Ricquier D, Casteilla L, Bouillaud F (1991) Molecular studies of the uncoupling protein. FASEB J 5:2237–2242

    PubMed  CAS  Google Scholar 

  6. Moulin K, Truel N, Andre M, Arnauld E, Nibbelink M, Cousin B et al (2001) Emergence during development of the white-adipocyte cell phenotype is independent of the brown-adipocyte cell phenotype. Biochem J 356:659

    Article  PubMed  CAS  Google Scholar 

  7. Lefterova M, Lazar M (2009) New developments in adipogenesis. Trends Endocrinol Metab 20:107–114

    Article  PubMed  CAS  Google Scholar 

  8. Gregoire F, Smas C, Sul H (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809

    PubMed  CAS  Google Scholar 

  9. Avram M, Avram A, James W (2007) Subcutaneous fat in normal and diseased states: 3. Adipogenesis: from stem cell to fat cell. J Am Acad Dermatol 56:472–492

    Article  PubMed  Google Scholar 

  10. Ntambi J, Young-Cheul K (2000) Adipocyte differentiation and gene expression. J Nutr 130:S3122–S3126

    Google Scholar 

  11. Entenmann G, Hauner H (1996) Relationship between replication and differentiation in cultured human adipocyte precursor cells. Am J Physiol Cell Physiol 270:C1011–C1016

    CAS  Google Scholar 

  12. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

  13. Zuk P, Zhu M, Ashjian P, De Ugarte D, Huang J, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed  CAS  Google Scholar 

  14. Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369

    Article  PubMed  Google Scholar 

  15. Evans C, Xie X (2008) Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem:883–909

  16. Potma E, Xie X (2005) Direct visualization of lipid phase segregation in single lipid bilayers with coherent anti-Stokes Raman scattering microscopy. Chem Phys Chem 6:77–79

    PubMed  CAS  Google Scholar 

  17. Wang H, Fu Y, Zickmund P, Shi R, Cheng J (2005) Coherent anti-Stokes Raman scattering imaging of axonal myelin in live spinal tissues. Biophys J 89:581–591

    Article  PubMed  CAS  Google Scholar 

  18. Nan X, Cheng J, Xie X (2003) Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J Lipid Res 44:2202

    Article  PubMed  CAS  Google Scholar 

  19. Strem B, Hicok K, Zhu M, Wulur I, Alfonso Z, Schreiber R et al (2005) Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 54:132–141

    Article  PubMed  CAS  Google Scholar 

  20. Pittenger M, Mackay A, Beck S, Jaiswal R, Douglas R, Mosca J et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  21. Grigoriadis A, Heersche J, Aubin J (1988) Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol 106:2139

    Article  PubMed  CAS  Google Scholar 

  22. Johnstone B, Hering T, Caplan A, Goldberg V, Yoo J (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265–272

    Article  PubMed  CAS  Google Scholar 

  23. Saltiel A, Kahn C (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    Article  PubMed  CAS  Google Scholar 

  24. Koopman R, Schaart G, Hesselink M (2001) Optimisation of oil red O staining permits combination with immunofluorescence and automated quantification of lipids. Histochem Cell Biol 116:63–68

    PubMed  CAS  Google Scholar 

  25. DiDonato D, Brasaemle D (2003) Fixation methods for the study of lipid droplets by immunofluorescence microscopy. J Histochem Cytochem 51:773–780

    Article  PubMed  CAS  Google Scholar 

  26. Fukumoto S, Fujimoto T (2002) Deformation of lipid droplets in fixed samples. Histochem Cell Biol 118:423–428

    Article  PubMed  CAS  Google Scholar 

  27. Zancanaro C, Carnielli V, Moretti C, Benati D, Gamba P (1995) An ultrastructural study of brown adipose tissue in pre-term human new-borns. Tissue Cell 27:339–348

    Article  PubMed  CAS  Google Scholar 

  28. Elabd C, Chiellini C, Carmona M, Galitzky J, Cochet O, Petersen R et al (2009) Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27:2753–2760

    Article  PubMed  CAS  Google Scholar 

  29. Young P, Arch J, Ashwell M (1984) Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett 167:10–14

    Article  PubMed  CAS  Google Scholar 

  30. Casteilla L, Nougues J, Reyne Y, Ricquier D (1991) Differentiation of ovine brown adipocyte precursor cells in a chemically defined serum-free medium. Importance of glucocorticoid and age of animals. Eur J Biochem 198:195–199

    Article  PubMed  CAS  Google Scholar 

  31. Klaus S (1997) Functional differentiation of white and brown adipocytes. Bioessays 19:215–223

    Article  PubMed  CAS  Google Scholar 

  32. Cypess A, Lehman S, Williams G, Tal I, Rodman D, Goldfine A et al (2009) Identification and importance of brown adipose tissue in adult humans. N Eng J Med 360:1509–1517

    Article  CAS  Google Scholar 

  33. van Marken Lichtenbelt W, Vanhommerig J, Smulders N, Drossaerts J, Kemerink G, Bouvy N et al (2009) Cold-activated brown adipose tissue in healthy men. N Eng J Med 360:1500–1508

    Article  Google Scholar 

  34. Lean M, James W, Jennings G, Trayhurn P (1986) Brown adipose tissue in patients with pheochromocytoma. Int J Obes 10:219–227

    PubMed  CAS  Google Scholar 

  35. Tiraby C, Tavernier G, Lefort C, Larrouy D, Bouillaud F, Ricquier D et al (2003) Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 278:33370–33376

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Next-Generation New-Technology Development Program of MKE, and by the Bio-signal Analysis Technology Innovation Program (No. 2009-0084137) and the National Research Foundation of Korea grant (No. 2009-0092835) of MEST, Republic of Korea.

Conflict of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Ho Chung.

About this article

Cite this article

Jo, S.J., Choi, W.W., Lee, E.S. et al. Temporary Increase of PPAR-γ and Transient Expression of UCP-1 in Stromal Vascular Fraction Isolated Human Adipocyte Derived Stem Cells During Adipogenesis. Lipids 46, 487–494 (2011). https://doi.org/10.1007/s11745-011-3525-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-011-3525-5

Keywords

Navigation