Skip to main content
Log in

Gold nanoparticles: sonocatalytic synthesis using ethanolic extract of Andrographis paniculata and functionalization with polycaprolactone-gelatin composites

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) were synthesized by sonication using ethanolic leaf extract of Andrographis paniculata. We investigated the optimum parameters for AuNP synthesis and functionalization with polycaprolactone-gelatin (PCL-GL) composites. The AuNPs were characterized with various biophysical techniques such as TEM, XRD, FT-IR and EDX spectroscopy. TEM images showed that nanoparticles were spherical in shape with a size range from 5 to 75 nm. EDX analysis revealed the presence of molecular oxygen and carbon on the surface of AuNPs. The synthesized AuNPs were tested for their effect on HeLa (human cervical cancer) and MCF-7 (human breast cancer) cell lines and found to be nontoxic and biocompatible, which are potential carriers for hydrophobic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Giljohann D A, Seferos D S, Daniel WL, et al. Gold nanoparticles for biology and medicine. Angewandte Chemie International Edition, 2010, 49(19): 3280–3294

    Article  CAS  Google Scholar 

  2. Ghosh P, Han G, De M, et al. Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews, 2008, 60(11): 1307–1315

    Article  CAS  Google Scholar 

  3. Lewis L N. Chemical catalysis by colloids and clusters. Chemical Reviews, 1993, 93(8): 2693–2730

    Article  CAS  Google Scholar 

  4. Lee K-B, Kim E-Y, Mirkin C A, et al. The use of nanoarrays for highly sensitive and selective detection of human immunodeficiency virus type 1 in plasma. Nano Letters, 2004, 4(10): 1869–1872

    Article  CAS  Google Scholar 

  5. Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Advanced Drug Delivery Reviews, 2008, 60(11): 1289–1306

    Article  CAS  Google Scholar 

  6. Uboldi C, Bonacchi D, Lorenzi G, et al. Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441. Particle and Fibre Toxicology, 2009, 6: 18 (12 pages)

    Article  Google Scholar 

  7. Narayanan K B, Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Advances in Colloid and Interface Science, 2011, 169(2): 59–79

    Article  CAS  Google Scholar 

  8. Siripong P, Kongkathip B, Preechanukool K, et al. Cytotoxic diterpenoid constituents from Andrographis paniculata Nees. leaves. Journal of the Science Society of Thailand, 1992, 18(4): 187–194

    Article  CAS  Google Scholar 

  9. Singha P K, Roy S, Dey S. Antimicrobial activity of Andrographis paniculata. Fitoterapia, 2003, 74(7–8): 692–694

    Article  Google Scholar 

  10. Dua V K, Ojha V P, Roy R, et al. Anti-malarial activity of some xanthones isolated from the roots of Andrographis paniculata. Journal of Ethnopharmacology, 2004, 95(2–3): 247–251

    Article  CAS  Google Scholar 

  11. Thisoda P, Rangkadilok N, Pholphana N, et al. Inhibitory effect of Andrographis paniculata extract and its active diterpenoids on platelet aggregation. European Journal of Pharmacology, 2006, 553(1–3): 39–45

    Article  CAS  Google Scholar 

  12. Yang L, Wu D F, Luo K W, et al. Andrographolide enhances 5-fluorouracil-induced apoptosis via caspase-8-dependent mitochondrial pathway involving p53 participation in hepatocellular carcinoma (SMMC-7721) cells. Cancer Letters, 2009, 276(2): 180–188

    Article  CAS  Google Scholar 

  13. Puri A, Saxena R, Saxena R P, et al. Immunostimulant agents from Andrographis paniculata. Journal of Natural Products, 1993, 56(7): 995–999

    Article  CAS  Google Scholar 

  14. Sheeja K, Kuttan G. Effect of Andrographis paniculata as an adjuvant in combined chemo-radio and whole body hyperthermia treatment — a preliminary study. Immunopharmacology and Immunotoxicology, 2008, 30(1): 181–194

    Article  CAS  Google Scholar 

  15. Madav S, Tandan S K, Lal J, et al. Anti-inflammatory activity of andrographolide. Fitoterapia, 1996, 67(5): 452–458

    CAS  Google Scholar 

  16. Chang R S, Yeung H W. Inhibition of growth of human immunodeficiency virus in vitro by crude extracts of Chinese medicinal herbs. Antiviral Research, 1988, 9(3): 163–175

    Article  CAS  Google Scholar 

  17. Ahmad M, Asmawi M Z. Some pharmacological effects of aqueous extract of Andrographis paniculata Nees. In: Gan E K, ed. The International Conference on the Use of’ Traditional Medicine & Other Natural Products in Health Care (Abstract). Penang, Malaysia: School of Pharmaceutical Sciences, University of Science Malaysia, 1993

    Google Scholar 

  18. Jarukamjorn K, Nemoto N. Pharmacological aspects of Andrographis paniculata on health and its major diterpenoid constituent Andrographolide. Journal of Health Science, 2008, 54(4): 370–381

    Article  CAS  Google Scholar 

  19. Kirtikar K R, Basu B D. Indian medicinal plants. Periodical Experts, 1975, 3: 1884–1886

    Google Scholar 

  20. Nazimudeen S K, Ramaswamy S, Kameswaran L. Effect of Andrographis paniculata on snake venom induced death and its mechanism. Indian Journal of Pharmaceutical Sciences, 1978, 40(4): 132–133

    CAS  Google Scholar 

  21. Suslick K S. Sonochemistry. Science, 1990, 247(4949): 1439–1445

    Article  CAS  Google Scholar 

  22. Maisonhaute E, Prado C, White P C, et al. Surface acoustic cavitation understood via nanosecond electrochemistry. Part III: Shear stress in ultrasonic cleaning. Ultrasonics Sonochemistry, 2002, 9(6): 297–303

    Article  CAS  Google Scholar 

  23. Mason T J, Cobley A J, Graves J E, et al. New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Ultrasonics Sonochemistry, 2011, 18(1): 226–230

    Article  CAS  Google Scholar 

  24. Nune S K, Chanda N, Shukla R, et al. Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. Journal of Materials Chemistry, 2009, 19(19): 2912–2920

    Article  CAS  Google Scholar 

  25. Mody V V, Siwale R, Singh A, et al. Introduction to metallic nanoparticles. Journal of Pharmacy and Bioallied Sciences, 2010, 2(4): 282–289

    Article  CAS  Google Scholar 

  26. Babu P J, Sharma P, Borthakur B B, et al. Synthesis of gold nanoparticles using Mentha arvensis leaf extract. International Journal of Green Nanotechnology: Physics and Chemistry, 2010, 2(2): 62–68

    Article  Google Scholar 

  27. Shankar S S, Rai A, Ahmad A, et al. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 2004, 275(2): 496–502

    Article  CAS  Google Scholar 

  28. Kannan P, Abraham John S. Synthesis of mercaptothiadiazolefunctionalized gold nanoparticles and their self-assembly on Au substrates. Nanotechnology, 2008, 19(8): 085602

    Article  Google Scholar 

  29. Hiremath J G, Devi V K. Preparation and in vitro characterization of poly(epsilon-caprolactone)-based tamoxifen citrate-loaded cylindrical subdermal implant for breast cancer. Asian Journal of Pharmaceutics, 2011, 5(1): 9–14

    Article  CAS  Google Scholar 

  30. Nagahama H, Maeda H, Kashiki T, et al. Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohydrate Polymers, 2009, 76(2): 255–260

    Article  CAS  Google Scholar 

  31. Babu P J, Sharma P, Kalita M C, et al. Green synthesis of biocompatible gold nanoparticles using Fagopyrum esculentum leaf extract. Frontiers of Materials Science, 2011, 5(4): 379–387

    Article  Google Scholar 

  32. Shankar S S, Rai A, Ankamwar B, et al. Biological synthesis of triangular gold nanoprisms. Nature Materials, 2004, 3(7): 482–488

    Article  CAS  Google Scholar 

  33. Song J Y, Kim B S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, 2009, 32(1): 79–84

    Article  Google Scholar 

  34. Shah Mohammadi M, Ahmed I, Marelli B, et al. Modulation of polycaprolactone composite properties through incorporation of mixed phosphate glass formulations. Acta Biomaterialia, 2010, 6(8): 3157–3168

    Article  Google Scholar 

  35. Ghasemi-Mobarakeh L, Prabhakaran M P, Morshed M, et al. Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, 2008, 29(34): 4532–4539

    Article  CAS  Google Scholar 

  36. Ki C S, Baek D H, Gang K D, et al. Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer, 2005, 46(14): 5094–5102

    Article  CAS  Google Scholar 

  37. Krimm S, Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Advances in Protein Chemistry, 1986, 38: 181–364

    Article  CAS  Google Scholar 

  38. Sahoo R, Sahoo S, Sahoo S, et al. Synthesis and characterization of polycaprolactone-gelatin nanocomposites for control release anticancer drug paclitaxel. European Journal of Scientific Research, 2011, 48(3): 527–537

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utpal Bora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babu, P.J., Saranya, S., Sharma, P. et al. Gold nanoparticles: sonocatalytic synthesis using ethanolic extract of Andrographis paniculata and functionalization with polycaprolactone-gelatin composites. Front. Mater. Sci. 6, 236–249 (2012). https://doi.org/10.1007/s11706-012-0175-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-012-0175-3

Keywords

Navigation