Skip to main content
Log in

Predicting the yield of pomegranate oil from supercritical extraction using artificial neural networks and an adaptive-network-based fuzzy inference system

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Various simulation tools were used to develop an effective intelligent system to predict the effects of temperature and pressure on an oil extraction yield. Pomegranate oil was extracted using a supercritical CO2 (SC-CO2) process. Several simulation systems including a back-propagation neural network (BPNN), a radial basis function neural network (RBFNN) and an adaptivenetwork-based fuzzy inference system (ANFIS) were tested and their results were compared to determine the best predictive model. The performance of these networks was evaluated using the coefficient of determination (R 2) and the mean square error (MSE). The best correlation between the predicted and the experimental data was achieved using the BPNN method with an R 2 of 0.9948.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fadavi A, Barzegar M, Hossein Azizi M. Determination of fatty acids and total lipid content in oilseed of 25 pomegranates varieties grown in Iran. Journal of Food Composition and Analysis, 2006, 19(6): 676–680

    Article  CAS  Google Scholar 

  2. Engin H, Erogul D, Aksehirli M, Hepaksoy S, Kukul Y. In leaf water potential of pomegranate (Punica Granatum l.) under different irrigation levels. Acta Horticulturae, 2006, 818: 193–198 (ISHS)

    Google Scholar 

  3. Kulkarni A P, Aradhya S M. Chemical changes and antioxidant activity in pomegranate arils during fruit development. Food Chemistry, 2005, 93(2): 319–324

    Article  CAS  Google Scholar 

  4. Abbasi H, Rezaei K, Emamdjomeh Z, Mousavi S M E. Effect of various extraction conditions on the phenolic contents of pomegranate seed oil. European Journal of Lipid Science and Technology, 2008, 110(5): 435–440

    Article  CAS  Google Scholar 

  5. Abbasi H, Rezaei K, Rashidi L. Extraction of essential oils from the seeds of pomegranate using organic solvents and supercritical CO2. Journal of the American Oil Chemists. Society, 2008, 85(1): 83–89

    CAS  Google Scholar 

  6. Ozgen M, Durgaç C, Serçe S, Kaya C. Chemical and antioxidant properties of pomegranate cultivars grown in the Mediterranean region of Turkey. Food Chemistry, 2008, 111(3): 703–706

    Article  CAS  Google Scholar 

  7. Gil M I, Tomás-Barberán F A, Hess-Pierce B, Holcroft D M, Kader A A. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry, 2000, 48(10): 4581–4589

    Article  CAS  Google Scholar 

  8. Hora J J, Maydew E R, Lansky E P, Dwivedi C. Chemopreventive effects of pomegranate seed oil on skin tumor development in CD1 mice. Journal of Medicinal Food, 2003, 6(3): 157–161

    Article  CAS  Google Scholar 

  9. Kassama L S, Shi J, Mittal G S. Optimization of supercritical fluid extraction of lycopene from tomato skin with central composite rotatable design model. Separation and Purification Technology, 2008, 60(3): 278–284

    Article  CAS  Google Scholar 

  10. Sahena F, Zaidul I S M, Jinap S, Karim A A, Abbas K A, Norulaini N A N, Omar A K M. Application of supercritical CO2 in lipid extraction—a review. Journal of Food Engineering, 2009, 95(2): 240–253

    Article  CAS  Google Scholar 

  11. Macías-Sánchez M D, Serrano C M, Rodríguez M R, de la Ossa E M. Kinetics of the supercritical fluid extraction of carotenoids from microalgae with CO2 and ethanol as cosolvent. Chemical Engineering Journal, 2009, 150(1): 104–113

    Article  Google Scholar 

  12. Rodríguez N R, de Diego S M, Beltrán S, Jaime I, Sanz MT, Rovira J. Supercritical fluid extraction of the omega-3 rich oil contained in hake (Merluccius capensis-Merluccius paradoxus) by-products: Study of the influence of process parameters on the extraction yield and oil quality. Journal of Supercritical Fluids, 2008, 47(2): 215–226

    Article  Google Scholar 

  13. Raasimman M, Govindarajan I, Karthikeyan C. Artificial neural network modeling of an inverse fluidized bed bioreactor. Journal of Applied Sciences and Environmental Management, 2010, 11(2): 65–69

    Article  Google Scholar 

  14. Jang J S R. ANFIS: Adaptive-network-based fuzzy inference system. Systems, Man and Cybernetics. IEEE Transactions on, 1993, 23(3): 665–685

    Google Scholar 

  15. Moghaddam A H, Sargolzaei J, Asl M H, Derakhshanfard F. Effect of different parameters on WEPS production and thermal behavior prediction using artificial neural network (ANN). Polymer-Plastics Technology and Engineering, 2012, 51(5): 480–486

    Article  CAS  Google Scholar 

  16. Yang S, Shi W, Zeng J. Modelling the supercritical fluid extraction of lycopene from tomato paste waste using neuro-fuzzy approaches. Advances in Neural Networks-ISNN, 2004, 3174: 129–140

    Google Scholar 

  17. Zahedi G, Azizia S, Hatamia T, Sheikhattar L. Gray box modeling of supercritical nimbin extraction from neem seeds using methanol as co-solvent. Open Chemical Engineering Journal, 2010, 4(1): 21–30

    Article  CAS  Google Scholar 

  18. Izadifar M, Abdolahi F. Comparison between neural network and mathematical modeling of supercritical CO2 extraction of black pepper essential oil. Journal of Supercritical Fluids, 2006, 38(1): 37–43

    Article  CAS  Google Scholar 

  19. Mitra P, Barman P C, Chang K S. Coumarin extraction from cuscuta reflexa using supercritical fluid carbon dioxide and development of an artificial neural network model to predict the coumarin yield. Food and Bioprocess Technology, 2011, 4(5): 737–744

    Article  Google Scholar 

  20. Menhaj M. Fundamentals of neural networks. Computational Intelligence, 1998, 2: 222–229

    Google Scholar 

  21. Kalavathi M S, Reddy B R, Singh B P. Modeling transformer internal short circuit faults using neural network techniques. 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2005, 601–604

    Google Scholar 

  22. Bors A G, Gabbouj M. Minimal topology for a radial basis functions neural network for pattern classification. Digital Signal Processing, 1994, 4(3): 173–188

    Article  Google Scholar 

  23. Poggio T, Girosi F. Networks for approximation and learning. Proceedings of the IEEE, 1990, 78(9): 1481–1497

    Article  Google Scholar 

  24. Bors A G, Pitas I. Median radial basis function neural network. Neural Networks. IEEE Transactions on, 1996, 7(6): 1351–1364

    CAS  Google Scholar 

  25. Ni Y, Xia Z, Kokot S. A kinetic spectrophotometric method for simultaneous determination of phenol and its three derivatives with the aid of artificial neural network. Journal of Hazardous Materials, 2011, 192(2): 722–729

    Article  CAS  Google Scholar 

  26. Wedge D C, Ingram DM, Mingham C G, McLean D A, Bandar Z A. Neural network architectures and overtopping predictions. Proceedings of the ICE-Maritime Engineering, 2005, 158(3): 123–133

    Article  Google Scholar 

  27. Liu F, Nie P C, Huang M, Kong W W, He Y. Nondestructive determination of nutritional information in oil seed rape leaves using visible/near infrared spectroscopy and multivariate calibrations. Science China Information Sciences, 2011, 54(3): 598–608

    Article  Google Scholar 

  28. Pan Y, Jiang J, Wang Z. Quantitative structure-property relationship studies for predicting flash points of alkanes using group bond contribution method with back-propagation neural network. Journal of Hazardous Materials, 2007, 147(1–2): 424–430

    Article  CAS  Google Scholar 

  29. Fazilat H, Ghatarband M, Mazinani S, Asadi Z, Shiri M, Kalaee M. Predicting the mechanical properties of glass fiber reinforced polymers via artificial neural network and adaptive neuro-fuzzy inference system. Computational Materials Science, 2012, 58: 31–37

    Article  CAS  Google Scholar 

  30. Iyatomi H, Hagiwara M. Adaptive fuzzy inference neural network. Pattern Recognition, 2004, 37(10): 2049–2057

    Article  Google Scholar 

  31. Pomares H, Rojas I, González J, Prieto A. Structure identification in complete rule-based fuzzy systems. Fuzzy Systems. IEEE Transactions on, 2002, 10(3): 349–359

    Google Scholar 

  32. Pomares H, Rojas I, Gonzalez J, Prieto A. A method for structure identification in complete rule-based fuzzy systems. IEEE, 2001, pp: 376–379

    Google Scholar 

  33. Sargolzaei J, Saghatoleslami N, Mosavi S M, Khoshnoodi M. Comparative study of artificial neural networks (ANN) and statistical methods for predicting the performance of ultrafiltration process in the milk industry. Iranian Journal of Chemistry & Chemical Engineering, 2006, 25(2): 67–76

    CAS  Google Scholar 

  34. Sargolzaei J, Kianifar A. Modeling and simulation of wind turbine Savonius rotors using artificial neural networks for estimation of the power ratio and torque. Simulation Modelling Practice and Theory, 2009, 17(7): 1290–1298

    Article  Google Scholar 

  35. Richard Bowen W, Jones M G, Yousef H N S. Prediction of the rate of crossflow membrane ultrafiltration of colloids: A neural network approach. Chemical Engineering Science, 1998, 53(22): 3793–3802

    Article  Google Scholar 

  36. Hagan M T, Menhaj M B. Training feedforward networks with the Marquardt algorithm. Neural Networks. IEEE Transactions on, 1994, 5(6): 989–993

    CAS  Google Scholar 

  37. Sharma A, Grover P, Kumar R. Reusability assessment for software components. ACM SIGSOFT Software Engineering Notes, 2009, 34(2): 1–6

    Article  CAS  Google Scholar 

  38. Tang L, Zeng G M, Shen G L, Zhang Y, Huang G H, Li J B. Simultaneous amperometric determination of lignin peroxidase and manganese peroxidase activities in compost bioremediation using artificial neural networks. Analytica Chimica Acta, 2006, 579(1): 109–116

    Article  CAS  Google Scholar 

  39. Zahra F, Jeyasurya B, Quaicoe J. High-speed transmission line relaying using artificial neural networks. Electric Power Systems Research, 2000, 53(3): 173–179

    Article  Google Scholar 

  40. Hosseini H G, Luo D, Xu G, Liu H, Benjamin D. Intelligent fish freshness assessment. Journal of Sensors, 2008, 2008: 1–8

    Article  Google Scholar 

  41. Anwar N, Khan M S, Ahmed K, Ahmad A, Athar A. Speed scheduling of autonomous railway vehicle control system using ANN. International Journal of Scientific & Engineering Research, 2011, 2(6): 1–6

    Google Scholar 

  42. Tolba A, Abu-Rezq A. Combined classifiers for invariant face recognition. Pattern Analysis & Applications, 2000, 3(4): 289–302

    Article  Google Scholar 

  43. Lahsasna A, Ainon R, Wah T Y. Intelligent credit scoring model using soft computing approach. IEEE, 2008, 396–402

    Google Scholar 

  44. Venkatraghavan V, Acharya U R, Pal M, Paul R R, Min L C, Ray A K, Chatterjee J, Chakraborty C. Automated oral cancer identification using histopathological images: A hybrid feature extraction paradigm. Micron (Oxford, England), 2011, 43(2–3): 352–364

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hedayati Moghaddam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sargolzaei, J., Moghaddam, A.H. Predicting the yield of pomegranate oil from supercritical extraction using artificial neural networks and an adaptive-network-based fuzzy inference system. Front. Chem. Sci. Eng. 7, 357–365 (2013). https://doi.org/10.1007/s11705-013-1336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-013-1336-3

Keywords

Navigation