Skip to main content
Log in

Development of an experimental procedure for real time investigation of diffusion in foods

  • Original Paper
  • Published:
Sensing and Instrumentation for Food Quality and Safety Aims and scope Submit manuscript

Abstract

Diffusion and mass transfer are ubiquitous operations in food processing. The application of electric fields can influence the mass transfer properties of foods. A small scale processing unit was used in the development of a method that would allow real-time measurement of diffusion of dyes into gel samples (at a range of temperatures and electric field strengths). The depth of penetration and localisation of infused material can be visualised and measured using image analysis methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Area of the test material in contact with the electrodes (m2)

\( \bar{G} \) :

Average grey intensity

G :

Grey intensity

I :

Current (A)

L :

Thickness of the slab (m)

R :

Resistance (Ω)

V :

Voltage (V)

n :

Number of pixels

x :

Distance in the x direction (m)

y :

Distance in the y direction (m)

σ :

Electrical conductivity (S m−1)

References

  1. K. Halden, A.A.P. DeAlwis, P.J. Fryer, Changes in the electrical conductivity of foods during ohmic heating. Int. J. Food Sci. Technol. 25, 9–25 (1990)

    Google Scholar 

  2. P.J.R. Schreier, D.G. Reid, P.J. Fryer, Enhanced diffusion during the electrical heating of foods. Int. J. Food Sci. Technol. 28, 249–260 (1993)

    Google Scholar 

  3. H.R. Carlon, J. Latham, Enhanced drying rates of wetted materials in electric fields. J. Atmos. Terr. Phys. 54(2), 117–118 (1992)

    Article  Google Scholar 

  4. A.G.F. Stapley, J.A. Sousa Gonçalves, M.P. Hollewand, L.F. Gladden, P.J. Fryer, An NMR pulsed field gradient study of the electrical and conventional heating of carrot. Int. J. Food Sci. Technol. 30, 639–654 (1995)

    CAS  Google Scholar 

  5. M.R. Kemp, P.J. Fryer, Enhancement of diffusion through foods using alternating electric fields. Innov. Food Sci. Emerg. Technol. 8(1), 143–153 (2007)

    Article  CAS  Google Scholar 

  6. M. Lima, Ascorbic acid degradation kinetics and mass transfer effects in biological tissue during ohmic heating, PhD Thesis, The Ohio State University (1996)

  7. M. Lima, B.F. Heskitt, S.K. Sastry, Diffusion of beet dye during electrical and conventional heating at steady-state temperature. J. Food Process Eng. 24(5), 331–340 (2001)

    Article  Google Scholar 

  8. S. Kulsrestha, S.K. Sastry, Electroporation of vegetable tissue in an ohmic heater. Institute of Food Technologists (online). Available at: http://www.confex2.com/ift/98annual/accepted/797.htm (1998)

  9. C.H. Lee, S.W. Yoon, Effect of ohmic heating on the structure and permeability of the cell membrane of Saccharomyces Cerevisiae. Institute of Food Technologists (online). Available at: http://www.confex2.com/ift/99annual/abstracts/4302.htm (1999)

  10. M. Lima, S.K. Sastry, The effects of ohmic heating frequency on hot-air drying rate and juice yield. J. Food Eng. 41(2), 115–119 (1999)

    Article  Google Scholar 

  11. W.C. Wang, S.K. Sastry, Effects of thermal and electrothermal pretreatments on hot air drying rate of vegetable tissue. J. Food Process Eng. 23, 299–319 (2000)

    Article  Google Scholar 

  12. S. Salengke, Effect of ohmic pretreatment on drying rate of grapes and adsorption isotherm of raisins. Institute of Food Technologists (online). Available at: http://www.confex.com/ift/2000/techprogram/paper_3573.htm (2000)

  13. W.C. Wang, S.K. Sastry, Effects of moderate electrothermal treatments on juice yield from cellular tissue. Innov. Food Sci. Emerg. Technol. 3, 371–377 (2002)

    Article  Google Scholar 

  14. N.R. Lakkakula, M. Lima, T. Walker, Rice bran stabilisation and rice bran oil extraction using ohmic heating. Bioresour. Technol. 92, 157–161 (2004)

    Article  CAS  Google Scholar 

  15. S. Bayarri, I. Rivas, E. Costell, L. Durán, Diffusion of sucrose and aspartame in kappa-carrageenan and gellan gum gels. Food Hydrocolloids 15, 67–73 (2001)

    Article  CAS  Google Scholar 

  16. P.J. Fryer, in New Methods of Food Preservation, ed. by G.W. Gould. Electrical resistance heating of foods (Blackie Academic and Professional, London, 1995)

  17. A.A.P. DeAlwis, K. Halden, P.J. Fryer, Shape and conductivity effects in the ohmic heating of foods. Chem. Eng. Res. Des. 67, 159–168 (1989)

    Google Scholar 

  18. M. Lima, B.F. Heskitt, S.K. Sastry, The effect of frequency and wave form on the electrical conductivity-temperature profiles of turnip tissue. J. Food Process Eng. 22, 41–54 (1999)

    Article  Google Scholar 

  19. T. Tzedakis, R. Basseguy, M. Comtat, Voltammetric and coulometric techniques to estimate the electrochemical reaction rate during ohmic sterilisation. J. Appl. Electrochem. 29, 821–828 (1999)

    Article  CAS  Google Scholar 

  20. B. Amsden, N. Turner, Diffusion characteristics of calcium alginate gels. Biotechnol. Bioeng. 65(5), 605–610 (1999)

    Article  CAS  Google Scholar 

  21. S. Neiser, K.I. Draget, O. Smidsrod, Interactions in bovine serum albumin-calcium alginate gel systems. Food hydrocolloids 13, 445–458 (1999)

    Article  CAS  Google Scholar 

  22. S. Odake, K. Hatae, A. Shimada, S. Iibuchi, Apparent diffusion coefficient of sodium-chloride in cubical agar-gel. Agric. Biol. Chem. 54(11), 2811–2817 (1990)

    CAS  Google Scholar 

  23. J.P. Gong, N. Komatsu, T. Nitta, Y. Osada, Electrical conductance of polyelectrolyte gels. J. Phys. Chem. B 101, 740–745 (1997)

    Article  CAS  Google Scholar 

  24. K. Samprovalaki, P.T. Robbins, M. Grammatika, P.J. Fryer, A study of diffusion of dyes in model foods using a visual method. J. Food Eng. (under review)

Download references

Acknowledgment

The authors thank Unilever Research Colworth, Bedford, UK for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantina Samprovalaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samprovalaki, K., Fryer, P.J. Development of an experimental procedure for real time investigation of diffusion in foods. Sens. & Instrumen. Food Qual. 5, 78–89 (2011). https://doi.org/10.1007/s11694-011-9114-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-011-9114-8

Keywords

Navigation