Skip to main content

Advertisement

Log in

Complexity by Subtraction

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

The eye and brain: standard thinking is that these devices are both complex and functional. They are complex in the sense of having many different types of parts, and functional in the sense of having capacities that promote survival and reproduction. Standard thinking says that the evolution of complex functionality proceeds by the addition of new parts, and that this build-up of complexity is driven by selection, by the functional advantages of complex design. The standard thinking could be right, even in general. But alternatives have not been much discussed or investigated, and the possibility remains open that other routes may not only exist but may be the norm. Our purpose here is to introduce a new route to functional complexity, a route in which complexity starts high, rising perhaps on account of the spontaneous tendency for parts to differentiate. Then, driven by selection for effective and efficient function, complexity decreases over time. Eventually, the result is a system that is highly functional and retains considerable residual complexity, enough to impress us. We try to raise this alternative route to the level of plausibility as a general mechanism in evolution by describing two cases, one from a computational model and one from the history of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adamowicz, S. J., Purvis, A., & Wills, M. A. (2008). Increasing morphological complexity in multiple parallel lineages of the Crustacea. Proceedings of the National Academy of Sciences, 105, 4786–4791.

    Article  CAS  Google Scholar 

  • Alroy, J. (2001). Understanding the dynamics of trends within evolving lineages. Paleobiology, 26, 319–329.

    Article  Google Scholar 

  • Boerlijst, M., & Hogeweg, P. (1991). Self-structuring and selection: Spiral waves as a substrate for prebiotic evolution. In C. G. Langton, C. Taylor, J. D. Farmer & S. Rasmussen (Eds.), Artifial life II (pp. 55–276). Reading: Addison-Wesley.

    Google Scholar 

  • Bonner, J. T. (1988). The evolution of complexity by means of natural selection. Princeton: Princeton University Press.

    Google Scholar 

  • Brown, T. A., & McBurnett, M. D. (1996). The emergence of political elites. In M. Coombs & M. Sulcoski (Eds.), Proceedings of the International Workshop on Control Mechanisms for Complex Systems (pp. 143–161).

  • Buchholtz, E. A., & Wolkovich, E. H. (2005). Vertebral osteology and complexity in Lagenorhynchus acutus. Marine Mammal Science, 21, 411–428.

    Article  Google Scholar 

  • Burks, A. W. (Ed) (1970). Essays on cellular automata. Urbana: University of Illinois Press.

    Google Scholar 

  • Cisne, J. L. (1974). Evolution of the world fauna of aquatic free-living arthropods. Evolution, 28, 337–366.

    Article  Google Scholar 

  • Crutchfield, J. P., & Hanson, J. E. (1993). Turbulent pattern bases for cellular automata. Physica D, 69, 279–301.

    Article  Google Scholar 

  • Crutchfield, J. P., & Mitchell, M. (1995). The evolution of emergent computation. Proceedings of the National Academy of Sciences, 92(23), 10742–10746.

    Article  CAS  Google Scholar 

  • Darwin, C. (1859). On the origin of species. London: J. Murray.

    Google Scholar 

  • Darwin, C. (1862). On the various contrivances by which British and foreign orchids are fertilised by insects, and on the food effects of intercrossing. London: J. Murray.

    Google Scholar 

  • Das, R., Mitchell, M., Crutchfield, J. P. (1994). A genetic algorithm discovers particle-based computation in cellular automata. In Y. Davidor, H. P. Schwefel & R. Manner (Eds.), Parallel problem solving from nature—PPSN III (pp. 344–353). Berlin: Springer.

    Chapter  Google Scholar 

  • Das, R., Crutchfield, J. P., Mitchell, M., & Hanson, J. E. (1995). Evolving globally synchronized cellular automata. In L. J. Eshelman (Ed.), Proceedings of the Sixth International Conference on Genetic Algorithms (pp. 336–343). Los Altos: Morgan Kaufmann.

    Google Scholar 

  • Dembski, W. A., & Ruse, M. (Eds.) (2004). Debating design. Cambridge: Cambridge University Press.

    Google Scholar 

  • Doolittle, W. F. (2012). A ratchet for protein complexity. Nature, 481, 270–271.

    CAS  PubMed  Google Scholar 

  • Ermentrout, G. B., & Edelstein-Keshet, L. (1993). Cellular automata approaches to biological modeling. Journal of Theoretical Biology, 160, 97–133.

    Article  CAS  PubMed  Google Scholar 

  • Esteve-Altava, B., Marugán-Lobón, J., Botella, H., & Rasskin-Gutman, D. (2012). Structural constraints in the evolution of the tetrapod skull complexity: Willistons Law revisited using network models. Evolutionary Biology. doi:10.1007/s11692-012-9200-9.

  • Finnigan, G. C., Hanson-Smith, V., Stevens, T. H., & Thornton, J. W. (2012). Evolution of increased complexity in a molecular machine. Nature, 481, 360–364.

    CAS  PubMed  Google Scholar 

  • Gardner, M. (1970). The fantastic combinations of John Conway’s new solitaire game “life”. Scientific American, 223(120), 123.

    Google Scholar 

  • Garey, M. R., & Johnson, D. S. (1979). Computers and intractability: A guide to the theory of NP-completeness. New York: W. H. Freeman.

    Google Scholar 

  • Goldberg, D. E. (1989) Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley.

    Google Scholar 

  • Gray, M. W., Lukeš, J., Archibald, J. M., Keeling, P. J., & Doolittle, W. F. (2010). Irremediable complexity? Science, 330, 920–921.

    CAS  Google Scholar 

  • Gregory, W. K. (1934). Polyisomerism and anisomerism in cranial and dental evolution among vertebrates. Proceedings of the National Academy of Sciences, 20, 1–9.

    Article  CAS  Google Scholar 

  • Gregory, W. K. (1935). Reduplication in evolution. Quarterly Review of Biology, 10, 272–290.

    Article  Google Scholar 

  • Hanson, J. E., & Crutchfield, J. P. (1992). The attractor-basin portrait of a cellular automaton. Journal of Statistical Physics, 66(5/6), 1415–1462.

    Article  Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press (2nd edn., MIT Press, 1992).

  • Hordijk, W. (1999). Dynamics, emergent computation, and evolution in cellular automata. PhD thesis, Albuquerque, NM, USA: University of New Mexico.

  • Hordijk, W. (2013). The EvCA project: A brief history. Complexity (To appear).

  • Hordijk, W., Crutchfield, J. P., & Mitchell, M. (1996). Embedded particle computation in evolved cellular automata. In T. Toffoli, M. Biafore & J. Leão (Eds.), Proceedings of the Conference on Physics and Computation (pp. 153–158). Cambridge: New England Complex Systems Institute.

    Google Scholar 

  • Hordijk, W., Crutchfield, J. P., & Mitchell, M. (1998). Mechanisms of emergent computation in cellular automata. In A. E. Eiben, T. Bäck, M. Schoenauer & H. P. Schwefel (Eds.), Parallel Problem Solving from Nature–V (pp. 613–622). New York: Springer.

    Chapter  Google Scholar 

  • Kauffman, S. A. (1996). At home in the universe. Oxford: Oxford University Press.

    Google Scholar 

  • Lynch, M. (2007). The fraily of adaptive hypotheses for the origins of organismal complexity. Proceedings of the National Academy of Sciences, 104, 8597–8604.

    Article  CAS  Google Scholar 

  • Manneville, P., Boccara, N., Vichniac, G. Y., & Bidaux, R. (1990). Cellular automata and modeling of complex physical systems, volume 46 of Springer Proceedings in Physics. New York: Springer.

  • Marcus, J. M. (2005). A partial solution to the C-value paradox. Lecture Notes in Computer Science, p 3678.

  • Margolus, N., Toffoli, T., & Vichniac, G. (1986). Cellular-automata supercomputers for fluid-dynamics modeling. Physical Review Letters, 56(16), 1694–1696.

    Article  PubMed  Google Scholar 

  • McShea, D. W. (1992). A metric for the study of evolutionary trends in the complexity of serial structures. Biological Journal of the Linnean Society, 45, 39–55.

    Article  Google Scholar 

  • McShea, D. W. (1993). Evolutionary changes in the morphological complexity of the mammalian vertebral column. Evolution, 47, 730–740.

    Article  Google Scholar 

  • McShea, D. W. (1994). Mechanisms of large-scale evolutionary trends. Evolution, 48, 1747–1763.

    Article  Google Scholar 

  • McShea, D. W. (1996). Metazoan complexity and evolution: Is there a trend? Evolution, 50, 477–492.

    Article  Google Scholar 

  • McShea, D. W. (2000). Functional complexity in organisms: Parts as proxies. Biology and Philosophy, 15, 641–668.

    Article  Google Scholar 

  • McShea, D. W. (2001). The hierarchical structure of organisms: A scale and documentation of a trend in the maximum. Paleobiology, 27, 405–423.

    Article  Google Scholar 

  • McShea, D. W. (2002). A complexity drain on cells in the evolution of multicellularity. Evolution, 56, 441–452.

    PubMed  Google Scholar 

  • McShea, D. W., & Brandon, R. N. (2010). Biologys first law. Chicago: University of Chicago Press.

    Google Scholar 

  • McShea, D. W., & Venit, E. P. (2001). What is a part? In G. P. Wagner (Ed.), The character concept in evolutionary biology (pp. 259–284). New York: Academic Press.

    Chapter  Google Scholar 

  • Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge: MIT Press.

    Google Scholar 

  • Mitchell, M. (1998). Computation in cellular automata: A selected review. In T. Gramss, S. Bornholdt, M. Gross, M. Mitchell & T. Pellizzari (Eds.), Nonstandard computation. Weinheim: VCH Verlagsgesellschaft.

    Google Scholar 

  • Mitchell, M., Hraber, P. T., & Crutchfield, J. P. (1993). Revisiting the edge of chaos: Evolving cellular automata to perform computations. Complex Systems, 7, 89–130.

    Google Scholar 

  • Mitchell, M., Crutchfield, J. P., & Hraber, P. T. (1994a). Dynamics, computation, and the “edge of chaos”: A re-examination. In G. A. Cowan, D. Pines & D. Melzner (Eds.), Complexity: Metaphors, Models, and Reality (pp. 497–513). Reading: Addison-Wesley. Santa Fe Institute Studies in the Sciences of Complexity, Proceedings Volume 19.

  • Mitchell, M., Crutchfield, J. P., & Hraber, P. T. (1994b). Evolving cellular automata to perform computations: Mechanisms and impediments. Physica D, 75, 361–391.

    Article  Google Scholar 

  • Packard, N. H. (1988). Adaptation toward the edge of chaos. In J. A. S. Kelso, A. J. Mandell & M. F. Shlesinger (Eds.), Dynamic patterns in complex systems (pp. 293–301). Singapore: World Scientic.

    Google Scholar 

  • Sidor, C. A. (2001). Simplification as a trend in synapsid cranial evolution. Evolution, 55, 1142–1419.

    Google Scholar 

  • Simon, P. M., & Nagel, K. (1998). Simplified cellular automaton model for city traffic. Physical Review E, 58(2), 1286–1295.

    Article  CAS  Google Scholar 

  • Stoltzfus, A. (1999). On the possibility of constructive neutral evolution. Journal of Molecular Evolution, 49, 169–181.

    Article  CAS  PubMed  Google Scholar 

  • Tamayo, P., & Hartman, H. (1988). Cellular automata, reaction-diffusion systems and the origin of life. In C. G. Langon (Ed.), Artifial life (pp. 105–124). Reading: Addison-Wesley.

    Google Scholar 

  • Taylor, J. S., & Raes, J. (2004). Duplication and divergence: The evolution of new genes and old ideas. Annual Review of Genetics, 38, 615–643.

    Article  CAS  PubMed  Google Scholar 

  • Valentine, J. W., Collins, A. G., & Meyer, C. P. (1994). Morphological complexity increase in metazoans. Paleobiology, 20, 131–142.

    Google Scholar 

  • Van Valen, L. (1962). A study of fluctuating asymmetry. Evolution, 16, 125–142.

    Article  Google Scholar 

  • von Neumann, J. (1966). Theory of self-reproducing automata. In A. W. Burks (Ed.), Urbana: University of Illinois Press.

  • Vichniac, G. Y. (1984). Simulating physics with cellular automata. Physica D, 10, 96–116.

    Article  Google Scholar 

  • Wagner, P. J. (1996). Testing the underlying patterns of active trends. Evolution, 50, 990–1017.

    Article  Google Scholar 

  • Weber, B. H., & Depew, D. J. (2004). Darwinism, design, and complex systems dynamics. In W. A. Dembski & M. Ruse (Eds.), Debating design (pp. 173–190). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Williston, S. W. (1914). Water reptiles of the past and present. Chicago: University of Chicago Press.

    Google Scholar 

Download references

Acknowledgments

The main ideas described in this paper originated at a catalysis meeting at the National Evolutionary Synthesis Center (NESCent) in Durham, NC, USA. They were developed further and finalized into the current paper during a subsequent short-term research visit of WH at, and supported by, NESCent. We thank Robert Brandon for suggesting the apt and evocative phrase “complexity by subtraction.” Finally, one of us (DM) would like to thank Benedikt Hallgrimsson for discussions decades ago, discussions that turned out to be foundational in the development of the ZFEL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim Hordijk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McShea, D.W., Hordijk, W. Complexity by Subtraction. Evol Biol 40, 504–520 (2013). https://doi.org/10.1007/s11692-013-9227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-013-9227-6

Keywords

Navigation