Skip to main content

Advertisement

Log in

The Nature of Evolutionary Radiations: A Case Study Involving Devonian Trilobites

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Evolutionary radiations, times of profound diversification of species against a broader background of more muted evolutionary change, have long been considered one of the fundamental patterns in the fossil record. Further, given the important role geological, environmental, and climatic processes play in causing speciation, analyzing the biogeographic context of radiations can yield important insight into their evolutionary mechanisms. In this study we examine biogeographic patterns and quantify rates of speciation in a diverse group of Devonian trilobites, the calmoniids, that has been hailed as a classic paleontological example of an evolutionary radiation. In particular, a phylogenetic biogeographic analysis—modified Brooks Parsimony Analysis—was used to examine the processes and geographic setting of speciation within the group. Results indicate that the Malvinokaffric Realm was a geographically complex area, and this geographic complexity created various opportunities for speciation via geodispersal and vicariance that created the fuel that fed the speciation in these taxa. Part of the geographic complexity was created not only by the inherent geologic backdrop of the region, but the overlying changes of sea level rise and fall. Rates of speciation were highest when sea level was lowest. Low sea level encouraged isolation of faunas in different tectonic basins. By contrast, sea level rise facilitated range expansion and geodispersal to other distinct tectonic basins, and speciation rates concomitantly fell; however, the taxa with the expanded ranges were later fodder for diversification when sea level fell again. Here we present a view of evolutionary radiations driven fundamentally by external abiotic factors—geology and climate—that cause range expansion and opportunities for geographic isolation with resultant rapid speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Boucot, A. J. (1988). Devonian biogeography; an update. In N. J. McMillan, A. F. Embry, & D. J. Glass (Eds.), Devonian of the World (pp. 211–227). Canadian Society of Petroleum Geologists, Calgary.

  • Carvalho, M. G. P. (2006). Devonian trilobites from the Falkland Islands. Palaeontology, 49(1), 21–34. doi:10.1111/j.1475-4983.2005.00529.x.

    Article  Google Scholar 

  • Carvalho, M. G. P., & Edgecombe, G. D. (1991). Lower-early middle Devonian calmoniid trilobites from Mato Grosso, Brazil, and related species from Paraná. American Museum Novitates, 3022, 1–13.

    Google Scholar 

  • Carvalho, M. G. P., Edgecombe, G., & Lieberman, B. S. (1997). Devonian calmoniid trilobites from the Parnaíba Basin, Piauí State, Brazil. American Museum Novitates, 3192, 1–11.

    Google Scholar 

  • Carvalho, M. G. P., Edgecombe, G. D., & Smith, L. (2003). New calmoniid trilobites (Phacopina, Acastoidea) from the Devonian of Bolivia. American Museum Novitates, 3407, 1–17. doi:10.1206/0003-0082(2003)407<0001:NCTPAF>2.0.CO;2.

    Article  Google Scholar 

  • Cocks, L. R. M., & Torsvik, T. H. (2002). Earth geography from 500 to 400 million years ago: A faunal and palaeomagnetic review. Journal of the Geological Society, 159(6), 631–644. doi:10.1144/0016-764901-118.

    Article  Google Scholar 

  • Cooper, M. R. (1986). Facies shifts, sea-level changes and event stratigraphy in the Devonian of South Africa. South African Journal of Science, 82(5), 255–258.

    Google Scholar 

  • Copper, P. (1977). Paleolatitudes in the Devonian of Brazil and the Frasnian-Famennian mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 21(3), 165–207. doi:10.1016/0031-0182(77)90020-7.

    Article  Google Scholar 

  • Cracraft, J. (1982). Geographic differentiation, cladistics, and vicariance biogeography: Reconstructing the tempo and mode of evolution. American Zoologist, 22(2), 411–424.

    Google Scholar 

  • Edgecombe, G. D. (1992). Trilobite phylogeny and the Cambrian-Ordovician “Event”: Cladistic reappraisal. In M. J. Novacek & Q. Wheeler (Eds.), Extinction and phylogeny (pp. 144–177). New York: Columbia University Press.

    Google Scholar 

  • Edgecombe, G. D., Vaccari, N. E., & Waisfeld, B. G. (1994). Lower Devonian calmoniid trilobites from the Argentine Precordillera; new taxa of the Bouleia group, and remarks on the tempo of calmoniid radiation. Geological Magazine, 131(4), 449–464.

    Article  Google Scholar 

  • Eldredge, N. (1979). Alternative approaches to evolutionary theory. Bulletin of Carnegie Museum of Natural History, 13, 7–19.

    Google Scholar 

  • Eldredge, N. (1989). Macroevolutionary dynamics: Species niches, and adaptive peaks. Columbus: McGraw-Hill.

    Google Scholar 

  • Eldredge, N., & Cracraft, J. (1980). Phylogenetic patterns and the evolutionary process: method and theory in comparative biology. New York: Columbia University Press.

    Google Scholar 

  • Eldredge, N., & Ormiston, A. R. (1979). Biogeography of Silurian and Devonian trilobites of the Malvinokaffric realm. In J. Gray, & A. J. Boucot (Eds.), Historical biogeography, plate tectonics, and the changing environment (pp. 147–167).

  • Engelmann, G. F., & Wiley, E. O. (1977). The place of ancestor-descendant relationships in phylogeny reconstruction. Systematic Zoology, 26(1), 1–11. doi:10.2307/2412861.

    Article  Google Scholar 

  • Erwin, T. L. (1979). Thoughts on the evolutionary history of ground beetles: Hypotheses generated from comparative faunal analyses of lowland forest sites in temperate and tropical regions. In T. L. Erwin, G. E. Ball, & D. R. Whitehead (Eds.), Carabid beetles, their evolution, natural history, and classification (pp. 539–592). The Hague: W. Junk.

    Google Scholar 

  • Foote, M. (2000a). Origination and extinction components of taxonomic diversity: General problems. Paleobiology, 26(sp 4), 74–102. doi:10.1666/0094-8373(2000)26[74:OAECOT]2.0.CO;2.

    Article  Google Scholar 

  • Foote, M. (2000b). Origination and extinction components of taxonomic diversity: Paleozoic and post-Paleozoic dynamics. Paleobiology, 26(4), 578–605. doi:10.1666/0094-8373(2000)026<0578:OAECOT>2.0.CO;2.

    Article  Google Scholar 

  • Gilinsky, N. L., & Bambach, R. K. (1987). Asymmetrical patterns of origination and extinction in higher taxa. Paleobiology, 13(4), 427–445.

    Google Scholar 

  • Givnish, T. J., & Sytsma, K. J. (1997). Molecular evolution and adaptive radiation (p. 621). New York: Cambridge University Press. xvii.

    Google Scholar 

  • Grahn, Y. (2005). Devonian chitinozoan biozones of Western Gondwana. Acta Geologica Polonica, 55(3), 211–227.

    Google Scholar 

  • Hillis, D. M., & Huelsenbeck, J. P. (1992). Signal, noise, and reliability in molecular phylogenetic analyses. The Journal of Heredity, 83(3), 189.

    PubMed  CAS  Google Scholar 

  • House, M. R., & Gradstein, F. M. (2004). The Devonian period. In F. M. Gradstein, J. G. Ogg, & A. G. Smith (Eds.), A geologic time scale (pp. 202–221). Cambridge: Cambridge University Press.

    Google Scholar 

  • Hulbert, R. C., Jr. (1993). Taxonomic evolution in North American Neogene horses (Subfamily Equinae): The rise and fall of an adaptive radiation. Paleobiology, 19(2), 216–234.

    Google Scholar 

  • Isaacson, P. A., & Sablock, P. E. (1988). Devonian system in Bolivia, Peru, and northern Chile. In: N. J. McMillan, A. F. Embry, & D. J. Glass (Eds.), Devonian of the World (pp. 719–728). Canadian Society of Petroleum Geologists, Calgary.

  • Johnson, J. G., Klapper, G., & Sandberg, C. A. (1985). Devonian eustatic fluctuations in Euramerica. Bulletin of the Geological Society of America, 96(5), 567–587. doi:10.1130/0016-7606(1985)96<567:DEFIE>2.0.CO;2.

    Article  Google Scholar 

  • Kaufmann, B. (2006). Calibrating the Devonian time scale: A synthesis of U–Pb ID–TIMS ages and conodont stratigraphy. Earth-Science Reviews, 76(3–4), 175–190. doi:10.1016/j.earscirev.2006.01.001.

    Article  Google Scholar 

  • Lieberman, B. S. (1993). Systematics and biogeography of the “Metacryphaeus Group” Calmoniidae (Trilobita, Devonian) with comments on adaptive radiations and the geological history of the Malvinokaffric realm. Journal of Paleontology, 67(4), 549–570.

    Google Scholar 

  • Lieberman, B. S. (2000). Paleobiogeography. New York: Kluwer Academic Publishers.

    Google Scholar 

  • Lieberman, B. S. (2001). A test of whether rates of speciation were unusually high during the Cambrian radiation. Proceedings: Biological Sciences, 268(1477), 1707–1714. doi:10.1098/rspb.2001.1712.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman, B. S. (2003). Paleobiogeography: The relevance of fossils to biogeography. Annual Review of Ecology Evolution and Systematics, 34(1), 51–69. doi:10.1146/annurev.ecolsys.34.121101.153549.

    Article  Google Scholar 

  • Lieberman, B. S. (2005). Geobiology and paleobiogeography: Tracking the coevolution of the earth and its biota. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1–2), 23–33. doi:10.1016/j.palaeo.2004.10.012.

    Article  Google Scholar 

  • Lieberman, B. S., Edgecombe, G. D., & Eldredge, N. (1991). Systematics and biogeography of the “Malvinella Group”, Calmoniidae (Trilobita, Devonian). Journal of Paleontology, 65(5), 824–843.

    Google Scholar 

  • Lieberman, B. S., & Eldredge, N. (1996). Trilobite biogeography in the Middle Devonian; geological processes and analytical methods. Paleobiology, 22(1), 66–79.

    Google Scholar 

  • Maguire, K. C., & Stigall, A. L. (2008). Paleobiogeography of Miocene Equinae of North America: A phylogenetic biogeographic analysis of the relative roles of climate, vicariance, and dispersal. Palaeogeography, Palaeoclimatology, Palaeoecology, 267(3–4), 175–184. doi:10.1016/j.palaeo.2008.06.014.

    Article  Google Scholar 

  • Mayr, E. (1942). Systematics and the origin of species from the viewpoint of a zoologist. New York: Columbia University Press.

    Google Scholar 

  • McGhee, G. R. (1996). The Late Devonian mass extinction: The Frasnian/Famennian crisis. New York: Columbia University Press.

    Google Scholar 

  • Nee, S. (2006). Birth-death models in macroevolution. Annual Review of Ecology Evolution and Systematics, 37, 1–17. doi:10.1146/annurev.ecolsys.37.091305.110035.

    Article  Google Scholar 

  • Phillimore, A. B., & Price, T. D. (2008). Density-dependent cladogenesis in birds. PLoS Biology, 6(3), e71. doi:10.1371/journal.pbio.0060071.

    Article  PubMed  Google Scholar 

  • Platnick, N. I. (1992). Patterns of biodiversity. In N. Eldredge (Ed.), Systematics, ecology, and the biodiversity crisis (p. 220). New York: Columbia University Press.

    Google Scholar 

  • Rode, A. L., & Lieberman, B. S. (2004). Using GIS to unlock the interactions between biogeography, environment, and evolution in Middle and Late Devonian brachiopods and bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology, 211(3–4), 345–359. doi:10.1016/j.palaeo.2004.05.013.

    Article  Google Scholar 

  • Rode, A. L., & Lieberman, B. S. (2005). Integrating evolution and biogeography: A case study involving Devonian crustaceans. Journal of Paleontology, 79(2), 267–276. doi:10.1666/0022-3360(2005)079<0267:IEABAC>2.0.CO;2.

    Article  Google Scholar 

  • Schluter, D. (2000). The ecology of adaptive radiation. Oxford: Oxford University Press.

    Google Scholar 

  • Sepkoski, J. J. (1998). Rates of speciation in the fossil record. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1366), 315–326. doi:10.1098/rstb.1998.0212.

    Article  PubMed  Google Scholar 

  • Simpson, G. G. (1953). The major features of evolution. New York: Columbia University Press.

    Google Scholar 

  • Smith, A. B. (1994). Systematics and the fossil record: Documenting evolutionary patterns. Oxford: Blackwell Publishing.

    Google Scholar 

  • Stanley, S. M. (1979). Macroevolution, pattern and process. San Francisco: W. H. Freeman.

    Google Scholar 

  • Swofford, D. L. (2002). PAUP*: Phylogenetic analysis using parsimony (* and other methods). Version 4.0*.

  • Torsvik, T. H., & Cocks, L. R. M. (2004). Earth geography from 400 to 250 Ma: A palaeomagnetic, faunal and facies review. Journal of the Geological Society, 161(4), 555–572. doi:10.1144/0016-764903-098.

    Article  Google Scholar 

  • Tucker, R. D., Bradley, D. C., Ver Straeten, C. A., Harris, A. G., Ebert, J. R., & McCutcheon, S. R. (1998). New U–Pb zircon ages and the duration and division of Devonian time. Earth and Planetary Science Letters, 158(3–4), 175–186. doi:10.1016/S0012-821X(98)00050-8.

    Article  CAS  Google Scholar 

  • Vogler, A., & Goldstein, P. (1997). Adaptive radiation and taxon cycles in North American tiger beetles: A cladistic perspective. In T. J. Givnish & K. J. Sytsma (Eds.), Molecular evolution and adaptive radiation (pp. 353–373). Cambridge: Cambridge University Press.

    Google Scholar 

  • Vrba, E. S. (1980). Evolution, species and fossils: How does life evolve? South African Journal of Science, 76, 61–84.

    Google Scholar 

  • Vrba, E. S. (1984). What is species selection? Systematic Zoology, 33, 318–328. doi:10.2307/2413077.

    Article  Google Scholar 

  • Vrba, E. S. (1987). Ecology in relation to speciation rates: Some case histories of Miocene-Recent mammal clades. Evolutionary Ecology, 1(4), 283–300. doi:10.1007/BF02071554.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Panorama Society of the Natural History Museum and Biodiversity Research Center (to FRA) and NSF DEB 0716162 (to BSL) for funding and Ed Wiley, Benedikt Hallgrimsson, and one anonymous reviewer for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francine R. Abe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abe, F.R., Lieberman, B.S. The Nature of Evolutionary Radiations: A Case Study Involving Devonian Trilobites. Evol Biol 36, 225–234 (2009). https://doi.org/10.1007/s11692-009-9060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-009-9060-0

Keywords

Navigation