Skip to main content
Log in

Towards a solution for performance related confounds: frontal, striatal and parietal activation during a continuous spatiotemporal working memory manipulation task

  • Brief Communication
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Working memory plays a role in various forms of psychopathology. However, working memory consists of multiple theoretical components that may be differently taxed by various specific types of task, and brain activation differences between patients and healthy controls may result from differences in task performance. This makes it difficult to interpret such results in terms of disease-related dysfunctions in affected regions or networks. The aim of the current study was to determine the brain activation related to the updating of spatiotemporal content of working memory, in such a way that performance-related confounds in future clinical studies would be minimized. Nineteen healthy volunteers performed a task involving a continuous updating process during fMRI measurement. A frontostriatal network including medial and lateral prefrontal cortex, inferior frontal cortex, premotor cortex, supplementary motor cortex, thalamus and putamen was found to be related to the updating process. The results constrain the set of brain regions plausibly related to the specific updating component of working memory. Further, the task design may be of use in future studies of pathological conditions such as schizophrenia due to the minimization of potential confounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Amiez, C., & Petrides, M. (2007). Selective involvement of the mid-dorsolateral prefrontal cortex in the coding of the serial order of visual stimuli in working memory. Proceedings of the National Academy of Sciences of the United States of America, 104(34), 13786–13791.

    Article  PubMed  CAS  Google Scholar 

  • Callicott, J. H., Mattay, V. S., Verchinski, B. A., Marenco, S., Egan, M. F., & Weinberger, D. R. (2003). Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. The American Journal of Psychiatry, 160(12), 2209–2215.

    Article  PubMed  Google Scholar 

  • Champod, A. S., & Petrides, M. (2007). Dissociable roles of the posterior parietal and the prefrontal cortex in manipulation and monitoring processes. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14837–14842.

    Article  PubMed  CAS  Google Scholar 

  • Chumbley, J., Worsley, K., Flandin, G., & Friston, K. (2010). Topological FDR for neuroimaging. NeuroImage, 49(4), 3057–3064.

    Article  PubMed  CAS  Google Scholar 

  • De Lange, F., Hagoort, P., & Toni, I. (2005). Neural topography and content of movement representations. Journal of Cognitive Neuroscience, 17, 97–112.

    Article  PubMed  Google Scholar 

  • Dickinson, D., & Harvey, P. D. (2009). Systemic hypotheses for generalized cognitive deficits in schizophrenia: a new take on an old problem. Schizophrenia Bulletin, 35(2), 403–414.

    Article  PubMed  Google Scholar 

  • Fuster, J. M. (2004). Upper processing stages of the perception-action cycle. Trends in Cognitive Sciences, 8(4), 143–145.

    Article  PubMed  Google Scholar 

  • Gladwin, T. E., Figner, B., Crone, E. A., & Wiers, R. W. (2011). Addiction, adolescence, and the integration of control and motivation. Developmental Cognitive Neuroscience, 1(4), 364–376.

    Article  PubMed  Google Scholar 

  • Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302(5648), 1181–1185.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman, M., & Cunningham, W. A. (2009). Type I and Type II error concerns in fMRI research: re-balancing the scale. Social Cognitive and Affective Neuroscience, 4(4), 423–428.

    Article  PubMed  Google Scholar 

  • Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19(3), 1233–1239.

    Article  PubMed  Google Scholar 

  • Manoach, D. S. (2003). Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophrenia Research, 60(2–3), 285–298.

    Article  PubMed  Google Scholar 

  • Manoach, D. S., Gollub, R. L., Benson, E. S., Searl, M. M., Goff, D. C., Halpern, E., Saper, C. B., et al. (2000). Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biological Psychiatry, 48(2), 99–109.

    Article  PubMed  CAS  Google Scholar 

  • Melcher, T., Falkai, P., & Gruber, O. (2008). Functional brain abnormalities in psychiatric disorders: neural mechanisms to detect and resolve cognitive conflict and interference. Brain Research Reviews, 59(1), 96–124.

    Article  PubMed  Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cognitive Psychology, 41(1), 49–100.

    Article  PubMed  CAS  Google Scholar 

  • Owen, A. M., Herrod, N. J., Menon, D. K., Clark, J. C., Downey, S. P., Carpenter, T. A., Minhas, P. S., et al. (1999). Redefining the functional organization of working memory processes within human lateral prefrontal cortex. The European Journal of Neuroscience, 11(2), 567–574.

    Article  PubMed  CAS  Google Scholar 

  • Pouthas, V., George, N., Poline, J.-B., Pfeuty, M., Vandemoorteele, P.-F., Hugueville, L., Ferrandez, A.-M., et al. (2005). Neural network involved in time perception: an fMRI study comparing long and short interval estimation. Human Brain Mapping, 25(4), 433–441.

    Article  PubMed  Google Scholar 

  • Price, C. J., & Friston, K. J. (1999). Scanning patients with tasks they can perform. Human Brain Mapping, 8(2–3), 102–108.

    Article  PubMed  CAS  Google Scholar 

  • Ragland, J. D., Moelter, S. T., Bhati, M. T., Valdez, J. N., Kohler, C. G., Siegel, S. J., Gur, R. C., et al. (2008). Effect of retrieval effort and switching demand on fMRI activation during semantic word generation in schizophrenia. Schizophrenia Research, 99(1–3), 312–323.

    Article  PubMed  CAS  Google Scholar 

  • Reichenberg, A., & Harvey, P. D. (2007). Neuropsychological impairments in schizophrenia: Integration of performance-based and brain imaging findings. Psychological Bulletin, 133(5), 833–858.

    Article  PubMed  Google Scholar 

  • Seger, C. A. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience and Biobehavioral Reviews, 32(2), 265–278.

    Article  PubMed  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15(1), 273-89.

    Google Scholar 

  • Unsworth, N., & Engle, R. W. (2007). On the division of short-term and working memory: an examination of simple and complex span and their relation to higher order abilities. Psychological Bulletin, 133(6), 1038–1066.

    Article  PubMed  Google Scholar 

  • Van Hecke, J., Gladwin, T. E., Coremans, J., Destoop, M., Hulstijn, W., & Sabbe, B. (2010). Prefrontal, parietal and basal activation associated with the reordering of a two-element list held in working memory. Biological Psychology, 85(1), 143–148.

    Article  PubMed  Google Scholar 

  • Van Snellenberg, J. X., Torres, I. J., & Thornton, A. E. (2006). Functional neuroimaging of working memory in schizophrenia: task performance as a moderating variable. Neuropsychology, 20(5), 497–510.

    Article  PubMed  Google Scholar 

  • Volz, H. P., Nenadic, I., Gaser, C., Rammsayer, T., Häger, F., & Sauer, H. (2001). Time estimation in schizophrenia: an fMRI study at adjusted levels of difficulty. Neuroreport, 12(2), 313–316.

    Article  PubMed  CAS  Google Scholar 

  • Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: a meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255–274.

    Article  Google Scholar 

  • Walter, H., Vasic, N., Höse, A., Spitzer, M., & Wolf, R. C. (2007). Working memory dysfunction in schizophrenia compared to healthy controls and patients with depression: evidence from event-related fMRI. NeuroImage, 35(4), 1551–1561.

    Article  PubMed  Google Scholar 

  • Wiener, M., Turkeltaub, P., & Coslett, H. B. (2010). The image of time: a voxel-wise meta-analysis. NeuroImage, 49(2), 1728–1740.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Van Hecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Hecke, J., Gladwin, T.E., Coremans, J. et al. Towards a solution for performance related confounds: frontal, striatal and parietal activation during a continuous spatiotemporal working memory manipulation task. Brain Imaging and Behavior 7, 85–90 (2013). https://doi.org/10.1007/s11682-012-9194-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-012-9194-z

Keywords

Navigation