Skip to main content
Log in

Factors affecting somatic embryogenesis in conifers

  • Review Article
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

This review seeks to examine the extreme response of isolated somatic plant cells of apical meristematic tissues of mature conifer trees towards specific stress conditions in vitro resulting in somatic embryogenesis. Signal molecules regulating embryo development have been described in angiosperms, but very little is known about somatic rejuvenation in conifers. Recent studies on cloning of mature conifers provide new perspectives on signal molecules on cellular dedifferentiation into the embryogenic pathway. Our recent studies show that signal molecules such as butenolide, calcium ions, salicylic acid, antioxidants, amino acids, triacontanol and 24-epibrassinolide all play an important role in the conversion of somatic cells into an embryogenic pathway in many recalcitrant pines. This constitutes a major breakthrough in forest biotechnology with many practical applications in clonal forestry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AGP:

arabinogalactan protein

ASA:

acetyl salicylic acid

BR:

brassinosteroid

DCR:

Durzan and Gupta medium

DTT:

dithiothreitol

GlcN:

N-glucosamine

EGTA:

ethylene glycol-bis-(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

GlcNAc:

N-acetylglucosamine

La3+ :

lanthanum chloride

LCO:

lipophilic chitin oligosaccharide

LM:

Litvay medium

OG:

oligogalacturonide

MS:

Murashige and Skoog medium

MSG:

Becwar medium

Nod:

nodulation

PEM:

pro-embryogenic mass

PGR:

plant growth regulator

SA:

salicylic acid

SSW:

smoke-saturated water

TDZ:

thidiazuron

tTCL:

transverse thin cell layer

TRIA:

triacontanol

WUS :

homeobox transcription factor WUSCHEL

References

  • Anil VS, Rao KS. 2000. Calcium-mediated signaling during sandalwood somatic embryogenesis: role for exogenous calcium as second messenger. Plant Physiology, 123: 1301–1311.

    Article  PubMed  CAS  Google Scholar 

  • Aronen TS, Pehkonen T, Malabadi RB, Ryynanen L. 2008. Somatic embryogenesis of Scots pine-advances in pine tissue culture at Metla. Vegetative propagation of conifers for enhancing landscaping and tree breeding. Proceedings of the Nordic meeting held in September 10th–11th 2008 at Punkaharju, Finland. Working Papers of the Finnish Forest Research Institute, 114: 68–71.

    Google Scholar 

  • Aronen TS, Ryynanen L, Malabadi RB. 2007. Somatic embryogenesis of Scots pine: initiation of cultures from mature tree explants and enhancement of culture system [Abstract]. In: IUFRO Tree Biotechnology Conference, June 3–8, 2007, Ponta Delgada, Azores, Portugal, No. SIX. 2.

  • Arroyo-Herrera A, Gonzalez AK, Moo RC, Quiroz-Figueroa FR, Loyola-Vargas VM, Rodriguez-Zapata LC, Burgeff D’Hondt C, Suarez-Solis VM, Castano E. 2008. Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 94: 171–180.

    Article  Google Scholar 

  • Azam MME, Singh P, Ghanim A. 1997. Triacontanol and triterpenes from Tecomella undulata. In: Mukherjii AK (ed), World Forestry Congress, Anatylya. Turkey 13–22 Oct. 1997 (vol 3) topic 15: 31.

  • Becwar MR, Nagamani R, Wann SR. 1990. Initiation of embryogenic cul tures and somatic embryo development in loblolly pine (Pinus taeda). Canadian Journal of Forest Research, 20: 810–817.

    Article  Google Scholar 

  • Benson EE. 2000. Do free radicals have a role in plant tissue culture recalcitrance? In Vitro Cellular and Developmental Biology — Plant, 36: 163–170.

    Article  CAS  Google Scholar 

  • Biernbaum JA, Houtz RL, Ries SK. 1998. Field studies with crops treated with colloidally dispersed triacontanol. Journal of the American Society of Horticultural Science, 113: 679–684.

    Google Scholar 

  • Bonga JM. 1996. Frozen storage stimulates the formation of embryo-like structures and elongating shoots in explants from mature Larix deciduas and L. × eurolepos. Plant Cell, Tissue and Organ Culture, 51: 195–200.

    Article  Google Scholar 

  • Bonga JM. 1997. The effect of collection dates and frozen storage on the formation of embryo-like structures and elongating shoots from explants from mature Larix deciduas and L. x eurolepis. Plant Cell, Tissue and Organ Culture, 51: 195–200.

    Article  Google Scholar 

  • Bonga JM. 2004. The effect of various culture media on the formation of embryo-like structures in cultures derived from explants taken from mature Larix deciduas. Plant Cell, Tissue Organ Culture, 77: 43–48.

    Article  Google Scholar 

  • Bonga JM, Pond SE. 1991. Adventitious shoot formation in cultures of 30-year old Larix deciduas, L. leptolepis, and L. laricina trees. Plant Cell, Tissue and Organ Culture, 26: 45–51.

    Article  Google Scholar 

  • Bonga JM, von Aderkas P. 1993. Rejuvenation of tissues from mature conifers and its implications for propagation in vitro. In: Ahuja MR, Libby WJ (Eds), Clonal Forestry I, Genetics and Biotechnology. Berlin: Springer-Verlag, pp. 182–199.

    Google Scholar 

  • Brosa D. 1999. Biological effects of brassinosteroids. Critical Reviews in Biochemistry and Molecular Biology, 34: 339–358.

    Article  PubMed  CAS  Google Scholar 

  • Cairney J, Pullman GS. 2007. The cellular and molecular biology of conifer embryogenesis. New Phytologist, 176: 511–536.

    Article  PubMed  CAS  Google Scholar 

  • Charles CC, Fletcher JC. 2003. Shoot apical meristem maintenance: the art of dynamic balance. Trends in Plant Science, 8(8): 394–401.

    Article  Google Scholar 

  • Chugh A, Khurana P. 2002. Gene expression during somatic embryogenesis — recent advances. Current Science, 83(6): 715–730.

    CAS  Google Scholar 

  • Dyachok JV, Wiweger M, Kenne L, von Arnold S. 2002. Endogenous nodfactor-like signal molecules promote early somatic embryo development in Norway spruce. Plant Physiology, 128: 523–533.

    Article  PubMed  CAS  Google Scholar 

  • Egertsdotter U, Mo LH, von Arnold S. 1993. Extracellular proteins in embryogenic suspension cultures of Norway spruce (Picea abies). Physiologia Plantaram, 88: 315–321.

    Article  CAS  Google Scholar 

  • Egertsdotter U, von Arnold S. 1995. Importance of arabinogalactan proteins for the development of somatic embryos of Norway spruce (Picea abies). Physiologia Plantaram, 93: 334–345.

    Article  CAS  Google Scholar 

  • Egertsdotter U., von Arnold S. 1998. Development of somatic embryos in Norway spruce. Journal of Experimental Botany, 49 (319): 155–162.

    CAS  Google Scholar 

  • Feher A. 2006. Why somatic plant cells starts to form embryos? Plant Cell Monographs, 2: 85–101.

    Article  CAS  Google Scholar 

  • Feher A, Pasternak TP, Dudits D. 2003. Transition of somatic plant cells to an embryogenic state. Plant Cell, Tissue and Organ Culture, 74: 201–228.

    Article  CAS  Google Scholar 

  • Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. 2004. A compound from smoke that promotes seed germination. Science 305(5686): 977. DOI: 10.1126/science.1099944

    Article  PubMed  CAS  Google Scholar 

  • Fletcher JC, Meyerowitz EM. 2000. Cell signaling within the shoot meristem. Current Opinion in Plant Biology, 3: 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Garin E, Bernier-Cardou M, Isabel N, Klimaszewska K, Plourde A. 2000. Effect of sugars, amino acids, and culture technique on maturation of somatic embryos of Pinus strobus on medium with two gellan gum concentrations. Plant Cell, Tissue and Organ Culture, 62: 27–37.

    Article  CAS  Google Scholar 

  • Gupta PK, Durzan DJ. 1985. Shoot multiplication from mature trees of Douglas fir and sugar pine. Plant Cell Reports, 4: 177–179.

    Article  CAS  Google Scholar 

  • Hu YX, Bao F, Li XY. 2000. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant Journal, 24: 693–701.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda-Iwai M, Umehara M, Satoh S, Kamada H. 2003. Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant Journal, 34: 107–114.

    Article  PubMed  CAS  Google Scholar 

  • Jack T. 2001. Plant development going MADS. Plant Molecular Biology, 46: 515–520.

    Article  PubMed  CAS  Google Scholar 

  • Jain N, Strik W A, van Staden J. 2008. Cytokinin and auxin-like activity of a butenolide isolated from plant-derived smoke. South African Journal of Botany, 74: 327–331.

    Article  CAS  Google Scholar 

  • Karami O, Aghavaisi B, Pour AM. 2009. Molecular aspects of somatic-to-embryogenic transition in plants. Journal of Chemical Biology, 2: 177–190.

    Article  PubMed  Google Scholar 

  • Karami O, Saidi A. 2009. The molecular basis for stress-induced acquisition of somatic embryogenesis. Molecular Biology Reports, 37(5): 2493–2507.

    Article  PubMed  Google Scholar 

  • Kim SK, Abe H, Little CHA, Pharis RP. 1990. Identification of two brassinosteroids from the cambial region of Scots pine (Pinus sylvestris) by gas chromatography-mass spectrometry, after detection using a dwarf rice lamina inclination bioassay. Plant Physiology, 94: 1709–1713.

    Article  PubMed  CAS  Google Scholar 

  • Knight SL, Mithchell CA. 1987. Stimulation productivity of hydroponic lettuce in controlled environments with triacontanol. Horticultural Science, 22: 1307–1309.

    CAS  Google Scholar 

  • Light ME, van Staden J. 2004. The potential of smoke in seed technology. South African Journal of Botany, 70: 97–101.

    Google Scholar 

  • Litvay JD, Verma DC, Johnson MA. 1985. Influence of loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of wild carrot (Daucus carota L.). Plant Cell Reports, 4: 385–389.

    Article  Google Scholar 

  • Ma GH, Bunn E, Dixon K, Flematti G. 2006. Comparative enhancement of germination and vigor in seed and somatic embryos by the smoke chemical butenolide, 3-methyl-2H-furo [2, 3-c] pyran-2-one in Baloskion tetraphyllum (Restionaceae). In Vitro Cellular and Developmental Biology — Plant, 42: 305–308.

    Article  CAS  Google Scholar 

  • Malabadi RB. 2006. Effect of glutathione on maturation of somatic embryos derived from vegetative shoot apices of mature trees of Pinus roxburghii. Journal of Phytological Research, 19: 35–38.

    CAS  Google Scholar 

  • Malabadi RB, Choudhury H, Tandon P. 2004. Initiation, maintenance and maturation of somatic embryos from thin apical dome sections in Pinus kesiya (Royle ex. Gord) promoted by partial desiccation and Gellan gum. Scientia Horticulture, 102: 449–459.

    Article  Google Scholar 

  • Malabadi RB, Mulgund GS, Nataraja K. 2009b. Triacontanol induced somatic embryogenesis and plantlet regeneration in Catharanthus roseus. Journal of Medicinal and Aromatic Plant Sciences, 31(2): 147–151

    CAS  Google Scholar 

  • Malabadi RB, Mulgund GS, Vijay Kumar S. 2009a. How somatic cells follows embryogenic pathway during cloning mature trees of conifers? Journal of Phytological Research, 22(1): 53–56.

    Google Scholar 

  • Malabadi RB, Mulgund GS, Vijaykumar S. 2009c. Smoke-induced seed germination and somatic embryogenesis. Journal of Phytological Research, 22(2): 205–209.

    CAS  Google Scholar 

  • Malabadi RB, Mulgund GS, Nataraja K. 2005. Plant regeneration via somatic embryogenesis in Pinus kesiya (Royle ex. Gord.) influenced by triacontanol. Acta Physiologiae Plantarum, 27(4A): 531–537.

    Article  CAS  Google Scholar 

  • Malabadi RB, Nataraja K. 2006b. RAPD detect no somaclonal variation in cryopreserved cultures of Pinus roxburghii SARG. Propagation of Ornamental Plants, 6: 114–120.

    Google Scholar 

  • Malabadi RB, Nataraja K. 2007a. Smoke-saturated water influences somatic embryogenesis using vegetative shoot apices of mature trees of Pinus wallichiana A. B. Jacks. Journal of Plant Sciences, 2: 45–53.

    Article  Google Scholar 

  • Malabadi RB, Nataraja K. 2007c. Influence of triacontanol on somatic embryogenesis of Pinus roxburghii Sarg. Baltic Forestry, 13(1): 39–44.

    Google Scholar 

  • Malabadi RB, Nataraja K. 2007d. 24-epibrassinolide induces somatic embryogenesis in Pinus wallichiana A. B. Jacks. Journal of Plant Sciences 2(2): 171–178.

    Article  CAS  Google Scholar 

  • Malabadi RB, Nataraja K. 2007e. Genetic transformation of conifers: Applications in and impacts on commercially forestry. Transgenic Plant Journal, 1(2): 289–313.

    Google Scholar 

  • Malabadi RB, Nataraja K. 2007f. Plant regeneration via somatic embryogenesis using secondary needles of mature trees of Pinus roxburghii Sarg. International Journal of Botany, 3: 40–47.

    Article  CAS  Google Scholar 

  • Malabadi RB, Nataraja K. 2007g. Isolation of cDNA clones of genes differentially expressed during somatic embryogenesis of P. roxburghii. American Journal of Plant Physiology, 2: 333–343.

    Article  CAS  Google Scholar 

  • Malabadi RB, Teixeira da Silva JA. 2011. Thin cell layers: Application to forestry biotechnology. Tree and Forestry Science and Biotechnology, 5(1): 14–18.

    Google Scholar 

  • Malabadi RB, Teixeira da Silva JA, Mulgund GS. 2011. Induction of somatic embryogenesis in Pinus caribaea. Tree and Forestry Science and Biotechnology, 5(1): 27–32.

    Google Scholar 

  • Malabadi RB, Teixeira da Silva JA, Nataraja K. 2008a. A new approach involving salicylic acid and thin cell layers for cloning mature trees of Pinus roxburghii (Chir Pine). The Americas Journal of Plant Science and Biotechnology, 2(2): 56–59.

    Google Scholar 

  • Malabadi RB, Teixeira da Silva JA, Nataraja K. 2008b. Salicylic acid induces somatic embryogenesis from mature trees of Pinus roxburghii (Chir pine) using TCL technology. Tree Forestry Science and Biotechnology, 2(1): 34–39.

    Google Scholar 

  • Malabadi RB, Teixeira da Silva JA, Nataraja K. 2008c. Smoke-saturated water influences in vitro seed germination of Vanda parviflora Lindl. Seed Science and Biotechnology, 2(2): 65–69.

    Google Scholar 

  • Malabadi RB, van Staden J. 2003. Somatic embryos can be induced from shoot apical domes of mature Pinus patula trees. South African Journal of Botany, 69: 450–451.

    Google Scholar 

  • Malabadi RB, van Staden J. 2005a. Somatic embryogenesis from vegetative shoot apices of mature trees of Pinus patula. Tree Physiology, 25, 11–16.

    Article  PubMed  Google Scholar 

  • Malabadi RB, van Staden J. 2005b. Role of antioxidants and amino acids on somatic embryogenesis of Pinus patula. In Vitro Cellular and Developmental Biology — Plant. 41: 181–186.

    Article  CAS  Google Scholar 

  • Malabadi RB, van Staden J. 2005c. Storability and germination of sodium alginate encapsulated somatic embryos derived from the vegetative shoot apices of mature Pinus patula trees. Plant Cell, Tissue and Organ Culture, 82: 259–265.

    Article  CAS  Google Scholar 

  • Malabadi RB, van Staden J. 2006. Cold-enhanced somatic embryogenesis in Pinus patula is mediated by calcium. South African Journal of Botany, 72: 613–618.

    Article  CAS  Google Scholar 

  • Malabadi RB, Nataraja K. 2006a. Cryopreservation and plant regeneration via somatic embryogenesis using shoot apical domes of mature Pinus roxburghii Sarg. Trees. In Vitro Cellular and Developmental Biology — Plant, 42: 152–159.

    Article  Google Scholar 

  • Mayer KF, Schoof H, Haecker A, Lenhard M, Jürgens G, Laux T. 1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 95: 805–815.

    Article  PubMed  CAS  Google Scholar 

  • Mu JH, Lee HS, Kao TH. 1994. Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase. Plant Cell, 6: 709–721.

    PubMed  CAS  Google Scholar 

  • Namasivayam P. 2007. Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 90: 1–8.

    Article  CAS  Google Scholar 

  • Namasivayam P, Skepper JN, Hanke D. 2010. Distribution of arabinogalactan protein (AGP) epitopes on the anther-derived embryoid cultures of Brassica napus. Pertanika Journal of Tropical Agriculture Science, 33(2): 303–313.

    Google Scholar 

  • Paques M, Bercetche J. 1998. Method for rejuvenating gymnosperms by somatic embryogenesis. Patent no. PCTWO9923874A1, Paris.

    Google Scholar 

  • Park SY, Klimaszewska K, Malabadi RB, Mansfield SD. 2009. Embryogenic cultures of lodgepole pine originating from mature trees and from immature seed explants. IUFRO Tree Biotechnology Conference, June 28th–July 2nd 2009, Whistler, BC, Canada, p 60 (abstract).

  • Poethig RS. 1990. Phase change and the regulation of shoot morphogenesis in plants. Science, 250: 923–930.

    Article  PubMed  CAS  Google Scholar 

  • Poovaiah BW, Reddy ASN. 1993. Calcium and signal transduction in plants. Critical Review of Plant Science, 12: 185–211.

    CAS  Google Scholar 

  • Pullman GS, Zhang Y, Phan BH. 2003. Brassinolide improves embryogenic tissue initiation in conifers and rice. Plant Cell Reports, 22: 96–104.

    Article  PubMed  CAS  Google Scholar 

  • Rajasekaran LR, Blake TJ. 1998. Early growth invigoration of jack pine seedlings by natural plant growth regulators. Trees, 12: 420–423.

    Article  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB. 1997. Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes: salicylic acid mediated oxidative damage requires H2O2. Plant Physiology, 115: 137–149.

    Article  PubMed  CAS  Google Scholar 

  • Ries S, Houtz R. 1983. Triacontanol as a plant growth regulator. Horticultural Science, 18: 654–662.

    CAS  Google Scholar 

  • Ronsch H, Adam G, Matschke J, Schachler G. 1993. Influence of (22S, 23S)-homobrassinolide on rooting capacity and survival of adult Norway spruce cuttings. Tree Physiology, 12: 71–80.

    PubMed  Google Scholar 

  • Ruaud JN. 1993. Maturation and conversion into plantlets of somatic embryos derived from needles and cotyledons of seven 56-day-old Picea abies. Plant Science, 92: 213–220.

    Article  Google Scholar 

  • Ruaud JN, Bercetche J, Paques M. 1992. First evidence of somatic embryogenesis from needles of 1-year-old Picea abies plants. Plant Cell Reports, 11: 563–566.

    Article  Google Scholar 

  • Sasse JM. 1997. Recent progress in brassinosteroid research. Physiologia Plantaram, 100: 697–701.

    Google Scholar 

  • Schmidt ED, Guzzo F, Toonen MA, de Vries SC. 1997. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development, 124: 2049–2062.

    PubMed  CAS  Google Scholar 

  • Schultze M, Kondorosi A. 1996. The role of lipochitooligosaccharides in root nodule organogenesis and plant cell growth. Current Opinion in Genetics and Development, 6: 631–638.

    Article  PubMed  CAS  Google Scholar 

  • Smith DR. 1994. Growth medium for plant embryogenic tissue. Australia/Canada Patent #PM5232.

  • Smith DR. 1997. The role of in vitro methods in pine plantation establishment: The lesson from New Zealand. Plant Tissue Culture and Biotechnology, 3: 63–73.

    Google Scholar 

  • Smith DR. 1999. Successful rejuvenation of radiata pine. Proceedings of the 25th Southern Forest Tree Improvement Conference, New Orleans 11–14th July 1999. SFITC\Louisiana State University, pp 158–167.

  • Spaink HP. 1996. Regulation of plant morphogenesis by lipochitin oligosaccharides. Critical Review in Plant Science, 15: 559–582.

    CAS  Google Scholar 

  • Staehelin C, Schultze M, Kondorosi E, Mellor RB, Boller T, Kondorosi A. 1994. Structural modifications in Rhizobium meliloti Nod factors influence their stability against hydrolysis by root chitinases. Plant Journal, 5: 319–330.

    Article  CAS  Google Scholar 

  • Tantos A, Meszaros A, Kissimon J, Horvath G, Farkas T. 2001. Triacontanol-supported microproprapagation of two woody plants. Plant Cell Reports, 19: 88–91.

    Article  Google Scholar 

  • Trigiano RN, Gray DJ. 2010. Plant Tissue Culture, Development and Biotechnology. CRC Press, ISBN. 13:978-1-4200-8327-9. pp 25–573.

  • Tuteja N, Gill SS, Trivedi PK, Asif MH, Nath P. 2010. Plant growth regulators and their role in stress tolerance. In: Anjum NA (ed), Plant Nutrition and Abiotic Stress Tolerance I. Plant Stress, 4(Special Issue 1): 1–18.

  • van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, van Kammen A, De Vries SC. 2001. N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiology, 125: 1880–1890.

    Article  PubMed  Google Scholar 

  • van Staden J, Brown NAC, Jager AK, Johnson TA. 2000. Smoke as a germination cue. Plant Species Biology, 15: 167–178.

    Article  Google Scholar 

  • van Staden J, Jager AK, Light ME, Burger BV. 2004. Isolation of the major germination cue from plant-derived smoke. South African Journal of Botany, 70: 654–657.

    Google Scholar 

  • Vardhini BV, Anuradha S, Sujatha E, Seeta Ram Rao S. 2010. Role of brassinosteroids in alleviating various abiotic and biotic stresses — a review. In: Anjum NA (ed), Plant Nutrition and Abiotic Stress Tolerance I. Plant Stress, 4 (Special Issue 1): 55–61

  • von Aderkas P, Bonga JM. 2000. Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiology, 20: 921–928.

    Article  Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L. 2002. Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 69: 233–249.

    Article  Google Scholar 

  • Westcott RJ. 1994. Production of embryogenic callus from nonembryonic explants of Norway spruce (Picea abies (L.) Karst). Plant Cell Reports, 14: 47–49.

    Article  CAS  Google Scholar 

  • Wiweger M. 2003. Signal molecules in embryogenesis of Norway spruce. Doctoral thesis, Swedish University of Agricultural Sciences Uppsala. ISSN 1401-6230; ISBN 91-576-6527-3. pp. 1–53.

  • Zuo J, Niu QW, Frugis G, Chua NH. 2000. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant Journal, 30: 349–359.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime A. Teixeira da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira da Silva, J.A., Malabadi, R.B. Factors affecting somatic embryogenesis in conifers. Journal of Forestry Research 23, 503–515 (2012). https://doi.org/10.1007/s11676-012-0266-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-012-0266-0

Key words

Navigation