Skip to main content
Log in

A Comparison Between ECAP and Conventional Extrusion for Consolidation of Aluminum Metal Matrix Composite

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, two powder consolidation techniques, equal channel angular pressing (ECAP) and extrusion, were utilized to consolidate attritioned aluminum powder and Al-5 vol.% nano-Al2O3 composite powder. The effect of ECAP and extrusion on consolidation behavior of composite powder and mechanical properties of subsequent compacts are presented. It is found that three passes of ECAP in tube at 200 °C is capable of consolidating the composite to 99.29% of its theoretical density whereas after hot extrusion of the composite the density reached to 98.5% of its theoretical density. Moreover, extrusion needs higher temperature and pressing load in comparison to the ECAP method. Hardness measurements show 1.7 and 1.2 times higher microhardness for the consolidated composite and pure aluminum after ECAP comparing with the extruded ones, respectively. Microstructural investigations and compression tests demonstrate stronger bonds between the particles after three passes of ECAP than the extrusion. Furthermore, the samples after three passes of ECAP show better wear resistance than the extruded ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.F. Lee, F. Boey, K.A. Khor, M.J. Tan, J. Gan, and N.L. Loh, The Production of Aluminum Alloy Composites Using a Cold Isostatic Press and Extrusion Approach, J. Mater. Process. Technol., 1992, 29, p 245–253

    Article  Google Scholar 

  2. S.M. Zebarjad and S.A. Sajadi, Dependency of Physical and Mechanical Properties of Mechanical Alloyed Al-Al2O3 Composite on Milling Time, Mater. Des., 2007, 28, p 2113–2120

    Article  CAS  Google Scholar 

  3. M. Tabandeh Khorshid, S.A. Jenabali Jahromi, and M.M. Moshksar, Mechanical Properties of Tri-Modal Al Matrix Composites Reinforced by Nano- and Submicron-Sized Al2O3 Particulates Developed by Wet Attrition Milling and Hot Extrusion, Mater. Des., 2010, 31, p 3880–3884

    Article  Google Scholar 

  4. J.M. Torralba, C.E. da Costa, and F. Velasco, P/M Aluminum Matrix Composites: An Overview, J. Mater. Process. Technol., 2003, 133, p 203–206

    Article  CAS  Google Scholar 

  5. B. Prabhu, C. Suryanarayana, L. An, and R. Vaidyanathan, Synthesis and Characterization of High Volume Fraction Al-Al2O3 Nanocomposite Powders by High Energy Milling, Mater. Sci. Eng. A, 2006, 425, p 192–200

    Article  Google Scholar 

  6. A.A. Mazen and A.Y. Ahmed, Mechanical Behavior of Al-Al2O3 MMC Manufactured by PM Techniques Part I—Scheme I, Processing Parameters, J. Mat. Eng. Perform., 1998, 7, p 393–401

    Article  CAS  Google Scholar 

  7. A.K. Mukhopadhyay, H.M. Flower, and T. Sheppard, Development of Mechanical Properties in AA 8090 Alloy Produced by Extrusion Processing, Mater. Sci. Technol., 1990, 6, p 461–468

    Article  CAS  Google Scholar 

  8. H. Asanuma, M. Hirohashi, and O. Hayama, Fabrication of Complicated Shape Metal Matrix Composites by Combined Extrusion, Adv. Technol. Plast., 1990, 2, p 945–950

    Google Scholar 

  9. M.J. Tan and X. Zhang, Powder Metal Matrix Composites: Selection and Processing, Mater. Sci. Eng. A, 1998, 244, p 80–85

    Article  Google Scholar 

  10. A. Parasiris, K.T. Hartwig, and M.N. Srinivasan, Formation/Consolidation of WC-Co Cermets by Simple Shear, Scripta Mater., 2000, 42, p 875–880

    Article  CAS  Google Scholar 

  11. K. Xia and X. Wu, Back Pressure Equal Channel Angular Consolidation of Pure Al Particles, Scripta Mater., 2005, 53, p 1225–1229

    Article  CAS  Google Scholar 

  12. K. Matsuki, T. Aida, T. Takeuchi, J. Kusui, and K. Yokoe, Microstructural Characteristics and Superplastic-Like Behavior in Aluminum Powder Alloy Consolidated by Equal Channel Angular Pressing, Acta Mater., 2000, 48, p 2625–2632

    Article  CAS  Google Scholar 

  13. O.N. Senkov, D.B. Miracle, J.M. Scott, and S.V. Senkova, Equal Channel Angular Extrusion Compaction of Semi-Amorphous Al85Ni10Y2.5La2.5 Alloy Powder, J. Alloys. Compd., 2004, 365, p 126–133

    Article  CAS  Google Scholar 

  14. J. Robertson, J.T. Im, I. Karaman, K.T. Hartwig, and I.E. Anderson, Consolidation of Amorphous Copper Based Powder by Equal Channel Angular Extrusion, J. Non-Cryst. Solids, 2003, 317, p 144–1451

    Article  CAS  Google Scholar 

  15. I. Karaman, M. Haouaoui, and H.J. Maier, Nanoparticle Consolidation Using Equal Channel Angular Extrusion at Room Temperature, J. Mater. Sci., 2007, 42, p 1561–1576

    Article  CAS  Google Scholar 

  16. M.A. Gibbs, K.T. Hartwig, L.R. Cornwell, R.E. Goforth, and E.A. Payzant, Texture Formation in Bulk Iron Processed by Simple Shear, Scripta Mater., 1998, 39, p 1699–1704

    Article  CAS  Google Scholar 

  17. M. Haouaoui, K.T. Hartwig, and E.A. Payzant, Effect of Strain Path on Texture and Annealing Microstructure Development in Bulk Pure Copper Processed by Simple Shear, Acta Mater., 2005, 53, p 801–810

    Article  CAS  Google Scholar 

  18. A.V. Nagasekhar, Y. Tick-Hon, and K.S. Ramakanth, Mechanics of Single Pass Equal Channel Angular Extrusion of Powder in Tubes, Appl. Phys. A, 2006, 85, p 185–194

    Article  CAS  Google Scholar 

  19. W. Xu, X. Wu, T. Honma, S.P. Ringer, and K. Xia, Nanostructured Al-Al2O3 Composite Formed In Situ During Consolidation of Ultrafine Al Particles by Back Pressure Equal Channel Angular Pressing, Acta Mater., 2009, 57, p 4321–4330

    Article  CAS  Google Scholar 

  20. R. Lapovok, D. Tomus, and B.C. Muddle, Low-Temperature Compaction of Ti–6Al–4V Powder Using Equal Channel Angular Extrusion with Back Pressure, Mater. Sci. Eng. A, 2008, 490, p 171–180

    Article  Google Scholar 

  21. R. Lapovok, D. Tomus, and C. Bettles, Shear Deformation with Imposed Hydrostatic Pressure for Enhanced Compaction of Powder, Scripta Mater., 2008, 58, p 898–901

    Article  CAS  Google Scholar 

  22. M. Balog, F. Simancik, O. Bajana, and G. Requena, ECA vs. Direct Extrusion—Techniques for Consolidation of Ultra-Fine Al Particles, Mater. Sci. Eng. A, 2009, 504, p 1–7

    Article  Google Scholar 

  23. P. Quang, Y.G. Jeong, S.H. Hong, and H.S. Kim, Equal Channel Angular Pressing of Carbon Nanotube Reinforced Metal Matrix Nanocomposites, Key Eng. Mater., 2006, 328, p 325–328

    Article  Google Scholar 

  24. R. Derakhshandeh and H.S.A. Jenabali Jahromi, An Investigation on the Capability of Equal Channel Angular Pressing for Consolidation of Aluminum and Aluminum Composite Powder, Mater.Des., 2011, 32, p 3377–3388

    Article  Google Scholar 

  25. Y.T. Zhu and T.C. Lowe, Observations and Issues on Mechanisms of Grain Refinement During ECAP Process, Mater. Sci. Eng. A., 2000, 291, p 46–53

    Article  Google Scholar 

  26. R. Lapovok, Damage Evolution Under Severe Plastic Deformation, Int. J. Fract., 2002, 115, p 159–172

    Article  CAS  Google Scholar 

  27. Z. Zhang and D.L. Chen, Contribution of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites, Mater. Sci. Eng. A, 2008, 483–484, p 148–152

    Google Scholar 

  28. R. Jiang-wei and S. Ai-dang, Strengthening and Stress Drop of Ultrafine Grain Aluminum After Annealing, Trans. Nonferrous Met. Soc. China, 2010, 20, p 2139–2142

    Article  Google Scholar 

  29. J.C. Werenskiold, Equal channel angular pressing (ECAP) of AA6082: Mechanical Properties, Texture and Microstructural Development, Ph.D. Thesis, The Norwegian University of Science and Technology, 2004

  30. B. Clausen, E. Ustundag, and M.A.M. Bourke, Investigation of the Reduction of NiAl2O4. JCPDS-International Center for Diffraction Data, Adv. X-Ray Anal., 2001, 44, p 32–37

    CAS  Google Scholar 

  31. B. Wielage, T. Muller, and Th. Lampke, Numerical Simulation of Thermo-Elastic Behavior of Textile Structured Ceramic Matrix Composite Bearings, Int. J. Microstruct. Mater. Prop., 2008, 3, p 65–76

    CAS  Google Scholar 

  32. V.V. Ganesh and N. Chawla, Effect of Particle Orientation Anisotropy on the Tensile Behavior of Metal Matrix Composites: Experiments and Microstructure-Based Simulation, Mater. Sci. Eng. A, 2005, 391, p 342–353

    Article  Google Scholar 

  33. N.B. Dhokey and R.K. Paretkar, Study of Wear Mechanisms in Copper-Based SiCp (20% by volume) Reinforced Composite, Wear, 2008, 265, p 117–133

    Article  CAS  Google Scholar 

  34. D.A. Rigney, The Roles of Hardness in the Sliding Behavior of Materials, Wear, 1994, 175, p 63–69

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Derakhshandeh Haghighi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haghighi, R.D., Jahromi, S.A.J., Moresedgh, A. et al. A Comparison Between ECAP and Conventional Extrusion for Consolidation of Aluminum Metal Matrix Composite. J. of Materi Eng and Perform 21, 1885–1892 (2012). https://doi.org/10.1007/s11665-011-0108-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-011-0108-9

Keywords

Navigation