Skip to main content
Log in

Gold- and Palladium-Induced Embrittlement Phenomenon in Microbumps with Au/Pd(P)/Ni(P) Metallization Pads

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, the microstructural evolution of Sn-3Ag-0.5Cu/Au/Pd(P)/Ni(P) microbumps during isothermal aging was examined by electron probe microanalysis and scanning electron microscopy equipped with electron backscatter diffraction. The Au/Pd(P)/Ni(P) trilayer was deposited on 85-μm (opening diameter) Cu pads with a thickness combination of 0.15 μm/0.2 μm/8 μm. The reaction of the Au/Pd(P) dual layer with the molten solder yielded plenty of AuSn4 and PdSn4 grains in the solder matrix after reflow, which has never been observed previously in the literature. At the interface, discontinuous, facet-type Cu6Sn5 [or (Cu,Ni)6Sn5] nucleated. Interestingly, the Cu6Sn5 transformed into layered Ni3Sn4 after subsequent aging for 250 h at 180°C. Moreover, the AuSn4 and PdSn4 agglomerated with each other and resettled to the region neighboring the interface. This configuration changed significantly when a pronounced corrosion occurred in the as-plated Ni(P) metallization pad. In the corroded Ni(P) case, Cu6Sn5 rarely appeared at the interface immediately after reflow, but a large quantity of PdSn4 formed in the solder region near the corroded Ni(P) layer. AuSn4 in this case distributed uniformly throughout the entire solder joint. Isothermal aging treatment drove the PdSn4 and AuSn4 to deposit onto the corroded Ni(P) surface, where they merged with each other as a dense layer of (Au0.61Pd0.30Ni0.09)Sn4 (250 h). The formation of the (Au,Pd,Ni)Sn4 layer over the corroded Ni(P) substrate provided a crack initiation site, deteriorating the mechanical reliability of the solder joint. The results of this study show that appropriate deposition of Au/Pd(P)/Ni(P) is very important for the thermal/mechanical reliability of microbumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.N. Tu and K. Zeng, Mater. Sci. Eng. R34, 1 (2001).

    CAS  Google Scholar 

  2. K. Zeng and K.N. Tu, Mater. Sci. Eng. R38, 55 (2002).

    CAS  Google Scholar 

  3. T. Laurila, V. Vuorinen, and J.K. Kivilahti, Mater. Sci. Eng. R49, 1 (2005).

    CAS  Google Scholar 

  4. C.E. Ho, S.C. Yang, and C.R. Kao, J. Mater. Sci.: Mater. Electron. 18, 155 (2007).

    Article  CAS  Google Scholar 

  5. H. Roberts, S. Lamprecht, G. Ramos, and C. Sebald, Proceeding of SMTA Pan Pacific Microelectronics Symposium (2008), p. 1

  6. K. Zeng, R. Stierman, D. Abbott, and M. Murtuza, JOM 58, 75 (2006).

    Article  CAS  Google Scholar 

  7. K. Suganuma and K.S. Kim, JOM 60, 61 (2008).

    Article  CAS  Google Scholar 

  8. H. Roberts and K. Johal, Lead-Free Soldering (New York: Springer, 2007), pp. 221–269.

    Book  Google Scholar 

  9. Y.W. Yen, P.H. Tsai, Y.K. Fang, S.C. Lo, Y.P. Hsieh, and C. Lee, J. Alloys Compd. 503, 25 (2010).

    Article  CAS  Google Scholar 

  10. J.W. Yoon, B.I. Noh, J.H. Yoon, H.B. Kang, and S.B. Jung, J. Alloys Compd. 509, 153 (2011).

    Article  Google Scholar 

  11. C.E. Ho, R. Zheng, G.L. Luo, A.H. Lin, and C.R. Kao, J. Electron. Mater. 29, 1175 (2000).

    Article  CAS  Google Scholar 

  12. S.P. Peng, W.H. Wu, C.E. Ho, and Y.M. Huang, J. Alloys Compd. 493, 431 (2010).

    Article  CAS  Google Scholar 

  13. C.E. Ho (Ph.D. thesis, National Central University, Taiwan, June, 2002).

  14. W.J. Boettinger, M.D. Vaudin, M.E. Williams, L.A. Bendersky, and W.R. Wagner, J. Electron. Mater. 32, 511 (2003).

    Article  CAS  Google Scholar 

  15. T.B. Massalski, J.L. Murray, and L.H. Bennett, Binary Alloy Phase Diagrams (Metals Park, OH: American Society for Metals, 1986).

    Google Scholar 

  16. J.D. Bernal, Nature 122, 54 (1928).

    Article  CAS  Google Scholar 

  17. K. Nogita and T. Nishimura, Scripta Mater. 59, 191 (2008).

    Article  CAS  Google Scholar 

  18. S. Furuseth and H. Fjellvag, Acta Chem. Scand. A39, 537 (1985).

    Article  CAS  Google Scholar 

  19. W.H. Wu, C.S. Lin, S.H. Huang, and C.E. Ho, J. Electron. Mater. 39, 2387 (2010).

    Article  CAS  Google Scholar 

  20. C.E. Ho, W.H. Wu, L.H. Hsu, and C.S. Lin, J. Electron. Mater. 41, 11 (2012).

    Article  CAS  Google Scholar 

  21. C.P. Lin and C.M. Chen, Microelectron. Reliab. 52, 385 (2012).

    Article  CAS  Google Scholar 

  22. K.H. Kim, J. Yu, and J.H. Kim, Scripta Mater. 63, 508 (2010).

    Article  CAS  Google Scholar 

  23. N. Biunno, Proceeding of Surface Mount Technology International (Edina, MN: SMTA, 1999), pp. 561–568.

  24. B.K. Kim, S.J. Lee, J.Y. Kim, K.Y. Ji, Y.J. Yoon, M.Y. Kim, S.H. Park, and J.S. Yoo, J. Electron. Mater. 37, 527 (2008).

    Article  CAS  Google Scholar 

  25. C.E. Ho, Y.M. Chen, and C.R. Kao, J. Electron. Mater. 28, 1231 (1999).

    Article  CAS  Google Scholar 

  26. R. Kubiak, J. Less-Common Met. 80, 53 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.E. Ho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ho, C., Wu, W., Wang, C. et al. Gold- and Palladium-Induced Embrittlement Phenomenon in Microbumps with Au/Pd(P)/Ni(P) Metallization Pads. J. Electron. Mater. 41, 3266–3275 (2012). https://doi.org/10.1007/s11664-012-2196-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2196-1

Keywords

Navigation