Skip to main content
Log in

Effect of Ga on the Wettability of CuGa10 on 304L Steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the present work, the effect of Ga on the wetting behavior of the Cu-rich braze filler CuGa10 (wt pct, Cu90.8Ga9.2 at. pct) on the steel 304L was investigated. For this, the macroscopic and microscopic effects governing the wetting of pure Ga, pure Cu, and CuGa10 alloy (wt pct) on the austenitic steel were analyzed and compared. Contact angle and surface tension measurements were carried out by means of the sessile drop technique, and, in addition, the phase formation at the interface was determined. Pure liquid Ga spreads on 304L, which supposedly is related to the formation of intermetallic Fe-Ga phases growing into the liquid Ga. Depending on the annealing time, FeGa3 and Fe14.5Ga12 were identified. In contrast, CuGa10 as well as pure Cu shows secondary wetting on the steel surface. Especially, liquid Cu prefers spreading laterally and vertically along the grain boundaries of the steel substrate. In spite of rather similar mechanisms, CuGa10 wets 304L steel at lower rate than pure Cu above the liquidus temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Künne: Einführung in die Maschinenelemente. (B. G. Teubner, Stuttgart 2001), p. 193.

    Book  Google Scholar 

  2. J. R. Davis Copper and Copper Alloys. (ASM International, 2001), p. 153.

    Google Scholar 

  3. Löten von Kupfer und Kupferlegierungen. Deutsches Kupfer-Institut, 1999, pp. 11-15.

  4. M. Schwartz: Brazing for the Engineering Technologist. (Chapman and Hall, New York 1995), p. 1.

    Google Scholar 

  5. D.P. Woodruff: The Solid-Liquid Interface. (Cambridge University Press, Cambridge, 1973).

    Google Scholar 

  6. M. Schwartz: Brazing for the engineering technologist. (Chapman and Hall, London, 1995), p. 8-11.

    Google Scholar 

  7. N. Eustathopoulos, M.G. Nicholas, and B. Drevet: Wettability at High Temperatures. (Elsevier Science, Oxford, 1999), p. 7.

    Google Scholar 

  8. V.M. Starov, M.G. Velarde, and C.J. Radke: Wetting and Spreading Dynamics. (CRC Press, Boca Raton 2007), p. 2-4.

    Google Scholar 

  9. T. Tanaka, M. Nakamoto, R. Oguni, J. Lee, and S. Hara: Z. Metallkunde, 2004, vol. 95, p. 818-822.

    Article  Google Scholar 

  10. G. Bernard, and C.H.P. Lupis: Metall. Trans., 1972, vol. 2, p. 555-559.

    Article  Google Scholar 

  11. N. Lashko, and S. Lashko: Brazing and Soldering of Metals. (MIR Publishers, Moscow 1979), p. 25.

    Google Scholar 

  12. M.G. Nicholas: Joining Processes; Introduction to brazing and diffusion bonding. (Kluwer Academic Publishers, Dordrecht 1998), p. 22-24.

    Google Scholar 

  13. M. Schwartz: Brazing for the Engineering Technologist. (Chapman and Hall, London 1995), p. 21-23.

    Google Scholar 

  14. G. Kumar, and K.N. Prabhu: Adv. Coll. Interf. Sci., 2007, vol. 133, p. 61-89.

    Article  Google Scholar 

  15. D.M. Jacobson, and G. Humpston: Principles of Brazing. (ASM International, Materials Park 2005), p. 49-50.

    Google Scholar 

  16. N. Lashko, and S. Lashko: Brazing and Soldering of Metals. (MIR Publishers, Moscow 1979), p. 130.

    Google Scholar 

  17. F. Weibke: Zeitschr. anorg. allg. Chem., 1934, vol. 220, p. 293-311.

    Article  Google Scholar 

  18. F. Geiger, C.A. Busse, and R.I. Loehrke: International Journal of Thermophysics, 1987, vol. 8, p. 425-436.

    Article  Google Scholar 

  19. P.W. Atkins: Physikalische Chemie. (Wiley-VCH, Weinheim 2001), p. 33.

    Google Scholar 

  20. M. Köhler: Diploma thesis (Chemnitz University of Technology, 2008).

  21. S.C. Hardy: J. Cryst. Growth, 1985, vol. 71, p. 602-606.

    Article  Google Scholar 

  22. D.A. Weirauch: J. Mater. Res., 1996, vol. 11, p. 20.

    Article  Google Scholar 

  23. W.S. Bennett, R.F. Hillyer, D.L. Keller, and D.H. Riefenberg: Weld. Res. Suppl., 1974, 40 p. 510-516.

    Google Scholar 

  24. O. Kozlova, R. Voytovich, M.F. Devismes, and N. Eustathopoulos: Mater. Sci. Eng., 2008, vol. A 495, p. 96-101.

    Article  Google Scholar 

  25. D.A. Porter, K.E. Easterling, and M.Y. Sherif: Phase Transformations in Metals and Alloys. 3 ed. (CRC Press Taylor & Francis Group, 2009), p. 98-99.

    Google Scholar 

  26. Schatt, W., H. Worch Werkstoffwissenschaft. (Wiley, Weinheim 2003), p. 294.

    Google Scholar 

  27. Y.-Y. Chuang, R. Schmid, and Y.A. Chang: Metall. Trans. A, 1984, vol. 15A, p. 1921-1930.

    Article  Google Scholar 

  28. W.B. Hardy: Phil. Mag., 1919, vol. 38, p. 49-55.

    Article  Google Scholar 

  29. C. Czeslik, H. Seemann, and R. Winter: Basiswissen Physikalische Chemie. (Vieweg + Teubner, Wiesbaden 2009), p. 224.

    Google Scholar 

  30. R. Pfoertsch, ed. ICDD, Penn State University Pennsylvania, University Park, 1982.

  31. K. Sumiyama, T. Yoshitake, and Y. Nakamura: J. Phys. Soc. Jpn, 1984, vol. 53, p. 3160.

    Article  Google Scholar 

  32. L. Ching-Kwei, S.S. Lu, and W. Xuebao: Acta Phys. Sinica, vol. 21, p. 1079.

  33. R. Guerin, and A. Guivarćh: J. Appl. Phys., 1989, vol. 66, p. 2122.

    Article  Google Scholar 

  34. F. Barbier, and J. Blanc: J. Mater. Res., 1998, vol. 14, p. 737-744.

    Article  Google Scholar 

  35. H. Okamoto: B. All. Pha. Diagr., 1990, vol. 11, p. 576-581.

    Article  Google Scholar 

  36. K. Schubert, T.R. Anantharaman, H.O.K. Ata, H.G. Meissner, M. Potzschke, W. Rossteutscher, and E. Stolz: Nat.-wiss., 1960, vol. 47, p. 512.

    Google Scholar 

  37. Y. Nishino, M. Matsuo, S. Asano, and N. Kawamiya: Scripta Metall. Mater., 1991, vol. 25, p. 2291.

    Article  Google Scholar 

  38. Binary alloy phase diagrams. (Metals Park, Ohio: American Society for Metals, 1986).

    Google Scholar 

  39. Copper and Copper Alloys. (ASM International, 2001), p. 171.

  40. H. Ellingham: J. Soc. Chem. Ind., 1944, vol. 63, p. 125-133.

    Article  Google Scholar 

  41. R. Asthana, A. Kumar, and N.B. Dahotre: Materials Science in Manufacturing Science. (Elsevier, Boston 2006), p. 252.

    Google Scholar 

  42. N. Eustathopoulos, M.G. Nicholas, and B. Drevet: Wettability at High Temperatures. (Elsevier Science, Oxford, 1999), p. 149.

    Google Scholar 

  43. E. Ricci, D. Giuranno, I. Grosso, T. Lanata, S. Amore, R. Novakovic, and E. Arato: J. Chem. Eng. Data, 2009, vol. 54, p. 1660-1665.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from Umicore AG & Co. KG and stimulating discussions with F. Heringhaus, H. Müller, H. Wendrock, and M. Stoica. The authors also thank S. Donath, M. Frey, A. Voss, B. Opitz, B. Bartusch, C. Mix, K. Schröder, C. di Vincenzo, and R. Fuchs for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Silze.

Additional information

Manuscript submitted September 5, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silze, F., Wiehl, G., Kaban, I. et al. Effect of Ga on the Wettability of CuGa10 on 304L Steel. Metall Mater Trans B 46, 1647–1653 (2015). https://doi.org/10.1007/s11663-015-0331-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0331-0

Keywords

Navigation