Skip to main content

Advertisement

Log in

Strengthening Micromechanisms in Cold-Chamber High-Pressure Die-Cast Mg-Al Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The contributions from grain boundary, solid solution, and dispersion strengthening to the yield strength of cast-to-shape specimens were calculated for seven binary alloys with compositions ranging from very dilute (0.5 mass pct Al) to concentrated (12 mass pct Al). Experimentally and theoretically determined parameters were used to explicitly account for the different microstructures at the skin and core regions of specimens’ cross sections. Microhardness maps were used to identify the specimens’ skin. The specimens’ strength was calculated as the weighted addition of the respective strengths of skin and core. The calculated strengths reproduced well the experimental values for the dilute alloys but underestimated the strength of the most concentrated alloys by as much as ~35 MPa. It is argued that the presence of the percolating network of Mg17Al12 eutectic intermetallic, particularly in the skin region, in conjunction with highly efficient dispersion hardening due to the convoluted shape of the intermetallics, accounts for the shortfall in the calculated strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The data of Figure 1 are given without error bars as they were collected on one set of grains, on a single specimen of each alloy. The accuracy of the data was reassured by the qualitative match with the micrographs of Figures 3 and 4, and the close quantitative agreement of the calculated values for the dilute alloys, whose strengths are largely determined by the grain size (Figure 9).

  2. The specimens were slightly etched to increase the contrast, but with care not to etch out the Mg17Al12 (the bright phase). The volume fractions measured by image analysis (Table II; Figure 2(b)) on these images matched the values obtained by other techniques, providing confidence that the etching did not affect the integrity of the intermetallic.

  3. The fraction of the cross section that remained elastic (thus defining the skin) at the point of the stress–strain curve where the core became fully plastic was determined analytically by comparing the strain hardening rate of the different alloys at yielding with that of the most dilute alloy, which does not exhibit a differentiated skin region.[22]

  4. The Al dissolved in the eutectic α-Mg was included in the calculation of c .

  5. Both the c ss- and the c E-values are immediate from the phase diagram, unlike the c , which depends on the volume fraction of ESGs, or, in geometrical terms, on the area fraction covered by the core.

  6. Any departure from the predicted solute profiles of Figure 2 implies a stronger solid solution hardening effect, hence the reference to this calculations as “lower bounds.”

  7. The strength of the solid solution calculated using the grain’s average solute concentration (c values in Table II) is nearly identical to the solid solution strength averaged over the grain’s diameter.

  8. Hansen showed that whether the reinforcing particles are located along the grain boundaries or uniformly dispersed inside the grains make little difference to the total strengthening.[49]

  9. Hansen and Ralph[52] also found a better agreement with the experimental data in dispersion-hardened Cu alloys using a linear addition law.

  10. The use of a linear addition of the strengths of skin and core is consistent with Kurzydlowski and Bucki’s analysis[53] of the strength of polycrystals made of subpolycrystals of different grain sizes.

  11. The stiffness of a bending dominated cellular structure scales with the square of the relative volume fraction of solid material.[35,57] From Table 2, the intermetallic at the skin increases from 11 pct for the 8.77 Al alloy to about 17 pct for the 11.6 Al alloy, increasing the local 3D network’s contribution to (7*(17/11)2) ~ 16.7 MPa.

References

  1. S. Kleiner, E. Ogris, O. Beffort, P.J. Uggowitzer, Adv. Eng. Mater., 5 (2003) 653-58.

    Article  Google Scholar 

  2. M.S. Dargusch, K. Pettersen, K. Nogita, M.D. Nave, G.L. Dunlop, Mater. Trans. (JIM), 47 (2006) 977-82.

    Article  Google Scholar 

  3. A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Schaffer, D.H. StJohn, J. Light Met., 1 (2001) 61-72.

    Article  Google Scholar 

  4. E. Aghion, N. Moscovitch, A. Arnon, Mater. Sci. Eng. A, 447 (2007) 341-46.

    Article  Google Scholar 

  5. C.H. Cáceres, J.R. Griffiths, A.R. Pakdel, C.J. Davidson, Mater. Sci. Eng. A, 402 (2005) 258-68.

    Article  Google Scholar 

  6. C.H. Cáceres, W.J. Poole, A.L. Bowles, C.J. Davidson, Mater. Sci. Eng. A, 402 (2005) 269-77.

    Article  Google Scholar 

  7. W.P. Sequeira, G.L. Dunlop, and M.T. Murray: in 3rd International Magnesium Conference, G.W. Lorimer, ed., The Institute of Metals, London, Manchester, 1997, pp. 63–73.

  8. W.P. Sequeira, M.T. Murray, G.L. Dunlop, and D.H. StJohn: TMS Symposium on Automotive Alloys, The Minerals Metals and Materials Society (TMS) Warrendale, PA, 1997, pp. 169–83.

  9. J.P. Weiler, J.T. Wood, R.J. Klassen, R. Berkmortel, and G. Wang: in Magnesium Technology 2005, N.R. Neelameggham, H.I. Kaplan, and B.R. Powell, eds., The Minerals, Metals and Materials Society (TMS), Warrendale, PA, 2005, pp. 191–96.

  10. J.P. Weiler, J.T. Wood, R.J. Klassen, R. Berkmortel, G. Wang, Mater. Sci. Eng. A, 419 (2006) 297-305.

    Article  Google Scholar 

  11. D.G. Leo Prakash, D. Regener, J. Alloys Compd., 464 (2008) 133-37.

    Article  Google Scholar 

  12. D.G.L. Prakash, D. Regener, J. Alloys Compd., 461 (2008) 139-46.

    Article  Google Scholar 

  13. S. Sannes, H. Gjestland, H. Westengen, H.I. Laukli, and O. Lohne: in 6th International Conference on Magnesium Alloys and Their Applications, K.U. Kainer, ed., DGM, Willey-VCH, Wolfsburg, 2003, pp. 725–31.

  14. E. Aghion, N. Lulu, Mater. Charact., 61 (2010) 1221-26.

    Article  Google Scholar 

  15. A.V. Nagasekhar, M.A. Easton, C.H. Cáceres, Adv. Eng. Mater., 11 (2009) 912-19, DOI:10.1002/adem.200900175.

    Article  Google Scholar 

  16. K.V. Yang, M.A. Easton, C.H. Caceres, Adv. Eng. Mater., 15 (2013) 302-07, doi: 10.1002/adem.201200188.

    Article  Google Scholar 

  17. A.L. Bowles, J.R. Griffiths, and C.J. Davidson: in Magnesium Technology 2001, J. Hryn, ed., The Minerals, Metals and Materials Society (TMS), Warrendale, PA, 2001, pp. 161–68.

  18. Z. Shan, A.M. Gokhale, Mater. Sci. Eng. A, 361 (2003) 267-74.

    Article  Google Scholar 

  19. H.I. Laukli, O. Lohne, S. Sannes, H. Gjestland, L. Arnberg, Int. J. Cast Met. Res., 16 (2003) 515-21.

    Google Scholar 

  20. H.I. Laukli, C.M. Gourlay, A.K. Dahle, Metall. Mater. Trans. A, 36A (2005) 805-18.

    Article  Google Scholar 

  21. K.V. Yang, M.A. Easton, C.H. Caceres, Mater. Sci. Eng. A, 580 (2013) 191-95, doi: 10.1016/j.msea.2013.05.017.

    Article  Google Scholar 

  22. K.V. Yang, C.H. Cáceres, A.V. Nagasekhar, M.A. Easton, Mater. Sci. Eng. A, 542 (2012) 49-55, doi: 10.1016/j.msea.2012.02.029.

    Article  Google Scholar 

  23. D.J. Sakkinen: “Physical Metallurgy of Magnesium Die Casting Alloys”, SAE Technical Paper 940779, SAE, Warrendale, PA, 1994, pp. 558–69.

  24. M.A. Easton, H. Kaufmann, W. Fragner, Mater. Sci. Eng. A, 420 (2006) 135-43.

    Article  Google Scholar 

  25. E. Aghion and B. Bronfin: in Third Int. Magnesium Conf., G.W. Lorimer, ed., The Institute of Materials, Manchester, 1996, pp. 313–25.

  26. T. Aune, H. Westengen, and T. Ruden: “Mechanical Properties of Energy Absorbing Magnesium Alloys”, SAE Technical Paper 930418, SAE, Warrendale, PA, 1993, pp. 51–57.

  27. K.V. Yang, C.H. Caceres, M.A. Easton, Mater. Sci. Eng. A, 580 (2013) 355-61, doi: 10.1016/j.msea.2013.05.018.

    Article  Google Scholar 

  28. K.V. Yang, C.H. Cáceres, A.V. Nagasekhar, M.A. Easton, Model. Simul. Mater. Sci., 20 (2012) 1-9, DOI:10.1088/0965-0393/20/2/024010.

    Google Scholar 

  29. A.V. Nagasekhar, C.H. Cáceres, C. Kong, Mater. Charact., 61 (2010) 1035-42, DOI:10.1016/j.matchar.2010.06.007.

    Article  Google Scholar 

  30. C.H. Cáceres, J.R. Griffiths, C.J. Davidson, C.L. Newton, Mater. Sci. Eng. A, 325 (2002) 344-55.

    Article  Google Scholar 

  31. J.P. Weiler, J.T. Wood, R.J. Klassen, R. Berkmortel, G. Wang, J. Mater Sci., 40 (2005) 5999-6005.

    Article  Google Scholar 

  32. C.H. Cáceres, G.E. Mann, J.R. Griffiths, Metall. Mater. Trans. A, 42A (2011) 1950-59, DOI:10.1007/s11661-010-0599-2.

    Article  Google Scholar 

  33. C.D. Lee, Mater. Sci. Eng. A, 459 (2007) 355-60.

    Article  Google Scholar 

  34. Y.-H. Wei, L.-F. Hou, L.-J. Yang, B.-S. Xu, M. Kozuka, H. Ichinose, J. Mater. Process. Technol., 209 (2009) 3278-84.

    Article  Google Scholar 

  35. B. Zhang, A.V. Nagasekhar, T. Sivarupan, C.H. Caceres, Adv. Eng. Mater., 15 (2013) 1059-67, doi: 10.1002/adem.201300138.

    Article  Google Scholar 

  36. D. Amberger, P. Eisenlohr, M. Göken, Acta Mater., 60 (2012) 2277-89.

    Article  Google Scholar 

  37. B.S. Shin, J.W. Kwon, D.H. Bae, Met. Mater. Int., 15 (2009) 203-07.

    Article  Google Scholar 

  38. K.V. Yang, C.H. Cáceres, M.A. Easton, M.A. Gibson, Kovove Materialy, 49 (2011) 207-12, DOI:10.4149/km_2011_3_207.

    Google Scholar 

  39. A.V. Nagasekhar, C.H. Caceres, and M.A. Easton: in Magnesium Technology 2008, M.O. Pekguleryuz, N.R. Neelameggham, R.S. Beals, and E.A. Nyberg, eds., The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 2008, pp. 343–46.

  40. W. Kurz, D. Fisher, Fundamentals of Solidification, 4th ed., Trans. Tech. Publications, Switzerland, 1998.

    Google Scholar 

  41. M.A. Easton, D.H. StJohn, Mater. Sci. Technol., 16 (2000) 993-1000.

    Article  Google Scholar 

  42. D. Mirković, R. Schmid-Fetzer, Metall. Mater. Trans. A, 40A (2009) 974-81.

    Article  Google Scholar 

  43. T.L. Chia, M.A. Easton, S.M. Zhu, M.A. Gibson, N. Birbilis, J.F. Nie, Intermetallics, 17 (2009) 481-90.

    Article  Google Scholar 

  44. M.S. Dargusch, M.A. Easton, S.M. Zhu, G. Wang, Mater. Sci. Eng. A, 523 (2009) 282-88.

    Article  Google Scholar 

  45. M. Zhou, A. Yu, N.Y. Li, H. Hu, and R. Bowers: in Magnesium Technology 2009, A.A. Luo, N.R. Neelameggham, R. S. Beals, eds., The Minerals, Metals & Materials Society (TMS), Warrendale, PA, 2006, pp. 121–27.

  46. A. Stich and H.G. Haldenwanger: in Magnesium 2000 (2nd Israeli Intl. Conf. on Magnesium Science and Technology), E. Aghion and D. Eliezer, eds., MRI (Beer-Sheva), Dead Sea, 2000, pp. 27–34.

  47. C.H. Cáceres, D.M. Rovera, J. Light Met., 1(3) (2001) 151-56.

    Article  Google Scholar 

  48. F.E. Hauser, P.R. Landon, J.E. Dorn, AIME Trans., 206 (1956) 589-93.

    Google Scholar 

  49. N. Hansen, Acta Metall., 17 (1969) 637-42.

    Article  Google Scholar 

  50. U.F. Kocks, A.S. Argon, M.F. Ashby, Prog. Mater. Sci., 19 (1975) 1-278.

    Article  Google Scholar 

  51. T.N. Baker, in: T.N. Baker (Ed.) Yield, Flow and Fracture of Polycrystals, Applied Science Publishers, London, 1983, pp. 235-73.

    Google Scholar 

  52. N. Hansen, B. Ralph, Acta Metall., 34 (1986) 1955-62.

    Article  Google Scholar 

  53. K.J. Kurzydlowski, J.J. Bucki, Acta Metall. Mater., 41 (1993) 3141-46.

    Article  Google Scholar 

  54. L.M. Brown, W.M. Stobbs, Philos. Mag., 23 (1971) 1185-99.

    Article  Google Scholar 

  55. Y. Brechet, J.D. Embury, S. Tao, L. Luo, Acta Mater., 39 (1991) 1781-86.

    Article  Google Scholar 

  56. C.H. Cáceres, J.R. Griffiths, P. Reiner, Acta Mater., 44 (1996) 15-23.

    Article  Google Scholar 

  57. B. Zhang, A.V. Nagasekhar, X. Tao, Y. Ouyang, C.H. Cáceres, M. Easton, Mater. Sci. Eng. A, 599 (2014) 204-11, doi: 10.1016/j.msea.2014.01.074.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos H. Cáceres.

Additional information

Manuscript submitted October 14, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K.V., Cáceres, C.H. & Easton, M.A. Strengthening Micromechanisms in Cold-Chamber High-Pressure Die-Cast Mg-Al Alloys. Metall Mater Trans A 45, 4117–4128 (2014). https://doi.org/10.1007/s11661-014-2326-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2326-x

Keywords

Navigation