Skip to main content
Log in

Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation-induced plasticity steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermomechanical processing simulations were performed using a hot-torsion machine, in order to develop a comprehensive understanding of the effect of severe deformation in the recrystallized and nonrecrystallized austenite regions on the microstructural evolution and mechanical properties of the 0.2 wt pct C-1.55 wt pct Mn-1.5 wt pct Si transformation-induced plasticity (TRIP) steel. The deformation schedule affected all constituents (polygonal ferrite, bainite in different morphologies, retained austenite, and martensite) of the multiphased TRIP steel microstructure. The complex relationships between the volume fraction of the retained austenite, the morphology and distribution of all phases present in the microstructure, and the mechanical properties of TRIP steel were revealed. The bainite morphology had a more pronounced effect on the mechanical behavior than the refinement of the microstructure. The improvement of the mechanical properties of TRIP steel was achieved by variation of the volume fraction of the retained austenite rather than the overall refinement of the microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, Cambridge, United Kingdom, 1997, pp. 1–17.

    Google Scholar 

  2. V.F. Zackay, E.R. Parker, D. Fahr, and R. Busch: Trans. ASM, 1967, vol. 60, pp. 252–59.

    CAS  Google Scholar 

  3. W.W. Gerberich, P.L. Hemmings, M.D. Merz, and V.F. Zackay: Trans. Techn. Notes, 1968, vol. 61, pp. 843–47.

    CAS  Google Scholar 

  4. S.K. Liu and J. Zhang: Metall. Trans. A, 1990, vol. 21A, pp. 1517–25.

    CAS  Google Scholar 

  5. O. Matsumura, Y. Sakuma, Y. Ishii, and J. Zhao: Iron Steel Inst. Jpn. Int., 1992, vol. 32 (10), pp. 1110–16.

    CAS  Google Scholar 

  6. Y. Sakuma, O. Matsumura, and H. Takechi: Metall. Trans. A, 1991, vol. 22A, pp. 489–98.

    CAS  Google Scholar 

  7. L.C. Chang and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1995, vol. 11, pp. 874–81.

    CAS  Google Scholar 

  8. D.Q. Bai, A. DiChiro, and S. Yue: Mater. Sci. Forum, 1998, vols. 284–286, pp. 253–60.

    Google Scholar 

  9. F.B. Pickering: Physical Metallurgy and Design of Steels, Applied Science Publishers Ltd., Barking, Essex, United Kingdom, 1978, p. 64.

    Google Scholar 

  10. O. Kawano, J. Wakita, K. Esaka, and H. Abe: Iron Steel Inst. Jpn. Int., 1996, vol. 82, pp. 232–44.

    CAS  Google Scholar 

  11. K. Fujiwara and S. Okaguchi: Mater. Sci. Forum, 1998, vols. 284–286, pp. 271–78.

    Google Scholar 

  12. P.D. Hodgson, D.C. Collison, and B. Perret: Proc. 7th Int. Symp. on Physical Simulation of Casting, Hot Rolling and Welding, 1997, Dynamic Systems Inc., Japan, vols. 21–23, pp. 219–29.

    Google Scholar 

  13. A. Zarei-Hanzaki: Ph.D. Thesis, McGill University, Montreal, 1994, pp. 44–45.

    Google Scholar 

  14. G.E. Lucas, J.W. Sheckherd, and G.R. Obette: Shear Punch and Microhardness Tests for Strength and Ductility Measurements, ASTM STP 888, ASTM, Philadelphia, PA, 1986, pp. 112–40.

    Google Scholar 

  15. I.B. Timokhina, E.V. Pereloma, and P.D. Hodgson: Mater. Sci. Technol., 2001, vol. 17, pp. 135–40.

    Article  CAS  Google Scholar 

  16. S.W. Thompson, D.J. Colvin, and G. Krauss: Metall. Trans. A, 1990, vol. 21A, pp. 1493–507.

    CAS  Google Scholar 

  17. H.K.D.H. Bhadeshia: Bainite in Steel, Transformation, Microstructure and Properties, 2nd ed., The Institute of Materials, Cambridge University Press, Cambridge, United Kingdom, 2001, pp. 201–24 and 237.

    Google Scholar 

  18. S. Yue, A. DiChiro, and A. Zarei-Hanzaki: JOM, 1997, pp. 59–61.

  19. R. Bengochea, B. Lopez, and I. Gutierrez: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 417–26.

    Article  CAS  Google Scholar 

  20. D.A. Hughes and N. Hansen: Acta Mater., 1997, vol. 45 (9), pp. 3871–86.

    Article  CAS  Google Scholar 

  21. N. Hansen: Scripta Metall., 1992, vol. 27, pp. 1447–52.

    Article  CAS  Google Scholar 

  22. D.V. Edmonds and R.C. Cochrane: Metall. Trans. A, 1990, vol. 21A, pp. 1527–39.

    CAS  Google Scholar 

  23. K. Fujiwara and S. Okaguchi: Mater. Sci. Forum, 1998, vols. 284–286, pp. 271–78.

    Article  Google Scholar 

  24. A.J. DeArdo: Thermomechanical Processing of Steels, 2000, IOM, London, vol. 1, pp. 309–21.

    Google Scholar 

  25. P.H. Shipway and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1995, vol. 11, pp. 1116–28.

    CAS  Google Scholar 

  26. F. Hassani and S. Yue: 41st MWSP Conf. Proc., ISS, Warrendale, PA, 1999, vol. XXXVII, pp. 493–98.

    Google Scholar 

  27. G. Langford and M. Cohen: Trans. ASM, 1969, vol. 62, pp. 623–38.

    CAS  Google Scholar 

  28. T. Kvackaj and I. Mamuzic: Iron Steel Inst. Jpn. Int., 1998, vol. 38 (11), pp. 1270–76.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timokhina, I.B., Hodgson, P.D. & Pereloma, E.V. Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation-induced plasticity steel. Metall Mater Trans A 34, 1599–1609 (2003). https://doi.org/10.1007/s11661-003-0305-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-003-0305-8

Keywords

Navigation