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Abstract: This paper investigates a sliding-mode model predictive control (MPC) algorithm with auxiliary contractive sliding vector
constraint for constrained nonlinear discrete-time systems. By adding contractive constraint into the optimization problem in regular
sliding-mode MPC algorithm, the value of the sliding vector is decreased to zero asymptotically, which means that the system state is
driven into a vicinity of sliding surface with a certain width. Then, the system state moves along the sliding surface to the equilibrium
point within the vicinity. By applying the proposed algorithm, the stability of the closed-loop system is guaranteed. A numerical
example of a continuous stirred tank reactor (CSTR) system is given to verify the feasibility and effectiveness of the proposed method.
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1 Introduction

Model predictive control (MPC), also called moving hori-
zon control (MHC) and receding horizon control (RHC), is
the most attractive control strategy for systems with input
and state constraints. The current control action of MPC
is obtained by solving a finite horizon optimization problem
at each sampling time, and the first one is applied to the
plant. At the next sampling time, the same procedure is
repeated.

Linear MPC (LMPC) is a control scheme for linear sys-
tems, which has been studied extensively[1]. However, most
of the practical systems have nonlinearities. Hence, the
nonlinear MPC (NMPC) algorithms should be applied in-
stead of LMPC strategies in order to get the high quality
of control performance. Because of the inherent difficul-
ties in analyzing nonlinear control systems, NMPC theory
is far from perfect and many challenges still exist, such as
stability, robustness, computational burden, etc.[2−5]

The major difficulty of NMPC is guaranteeing the closed-
loop stability. In order to guarantee the closed-loop stabil-
ity, various stability constraints have been proposed. The
simplest approach is to add a terminal equality constraint
into the optimization problem[6]. It requires that the state
exactly converges to zero in finite steps. It is conserva-
tive, and the optimization problem may become infeasible.
For relaxation, the terminal inequality constraint is applied,
where terminal state is enforced to a region which includes
equilibrium point in its interior, instead of a point (equi-
librium point). By combining the terminal cost function
with terminal inequality constraint, Chen and Allgöwer[7]

proposed a quasi-infinite NMPC strategy, which can get the
infinite horizon control performance by minimizing the up-
per bound of infinite horizon cost functions. Oliveira and
Morari[8] proposed the contractive constraint, which adds
a terminal contractive constraint in the optimization prob-
lem to guarantee the system stability. In order to prove
the closed-loop stability, a block optimization strategy is

Manuscript received August 2, 2012; revised September 25, 2012
This work was supported by Fundamental Research Funds for the

Central Universities (Nos. CDJXS10170008 and CDJXS10171101).

adopted. Xie[9] presented the first state contractive NMPC
algorithm, in which the contractive constraints are enforced
on the one-step ahead predicted state. Sun et al.[10] pre-
sented another contractive NMPC algorithm, which adopts
a time-varying implementation horizon confirmed by solv-
ing an appropriate optimization problem.

As an important branch of variable structure
control[11−13], sliding mode control (SMC) is charac-
terized by switching the control law during the evolution
of the state, and enforcing the states to the predefined
asymptotic stable sliding surface. We call the control algo-
rithm which combines MPC with SMC the sliding-mode
MPC (SM-MPC). Parte et al.[14] designed a generalized
predictive control (GPC) method based on sliding mode
controller. Xiao et al.[15] addresed a similar approach,
where the model algorithm control (MAC) is used. Zhou
et al.[16] presented an SM-MPC algorithm for systems with
state space model, which takes sliding vector as a new
variable, and stabilizes it by dual-mode MPC.

Inspired by [16], this paper takes sliding vector as a new
variable, and stabilizes it by MPC algorithm with extra
contractive sliding vector constraint for constrained nonlin-
ear systems. This makes the sliding vector contract to zero
step by step. It implies that the system state implicitly
satisfies the reaching condition. The proposed algorithm
improves the overall feasibility, and avoids the switching
between inner mode controller and outer mode controller.
The closed-loop stability is guaranteed if asymptotic stable
sliding mode is predesigned.

This paper is organized as follows. Section 2 describes
the problem to be studied. Section 3 presents the new con-
tractive SM-MPC. The stability is discussed and proved in
Section 4, which is mainly inspired by the method in [8]. In
Section 5, we apply the proposed algorithm to a practical
system and verify the feasibility of the proposed algorithm.
Note that, this paper makes a tentative research on the
SM-MPC algorithm with contractive constraint, and any
further improvement is encouraged for the readers.

Notations. R denotes the set of real numbers. The
Euclidean norm of a vector x is denoted as ||x||, and ||x||P̂
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is the weighted Euclidean norm with respect to x, where
P̂ is the weighting matrix. N stands for the prediction
horizon. The mathematical function int (x) gets the largest
integer not greater than x. kj = j × N for any j ∈ Z+ is
the set of nonnegative integers.

2 Problem statement

Consider the time-invariant nonlinear dynamic system
described in the following state space equation:

x(k + 1) = f(x(k), u(k)), x(0) = x0, k > 0 (1)

where x(k) ∈ Rn, u(k) ∈ Rm are the state and input vec-
tors at sampling time k, and the system state and input are
constrained by

x(k) ∈ X ⊆ Rn, u(k) ∈ U ⊆ Rm. (2)

The following assumptions hold throughout the paper[7].
Assumption 1. f : Rn × Rm → Rn is twice continu-

ously differentiable and f(0, 0) = 0. Thus, 0 ∈ Rn is an
equilibrium point of the system with u = 0.

Assumption 2. U ⊆ Rm and X ⊆ Rn are compact,
convex, and contain the origin as an interior point.

Remark 1. In [7], besides Assumptions 1 and 2, it also
needs to assume that the pair (A, B) is stabilizable, where
A := ∂f

∂x
(0, 0) and B := ∂f

∂u
(0, 0) lead to the Jacobian lin-

earization of the system (1) at the origin:

x(k + 1) = Ax(k) + Bu(k). (3)

For the nonholonomic systems, like cars, mobile robots, etc.,
the pair (A, B) cannot be stabilized, so the MPC algorithm
in [7] cannot be implemented in these systems. But in our
algorithm, this assumption is not needed, i.e., the proposed
algorithm can be used to control the nonholonomic systems.

For the nonlinear discrete-time system (1), the regular
NMPC algorithm[17] is to solve the optimization problem
described as

P1(k, x, N) : arg min
u(k|k),··· ,u(k+N−1|k)

J(x(k), u(·)) (4)

s.t. x(k + i + 1|k) = f(x(k + i|k), u(k + i|k)) (5)

x(k + i|k) ∈ X, i = 0, · · · , N − 1 (6)

u(k + i|k) ∈ U, i = 0, · · · , N − 1 (7)

x(k + N |k) ∈ Ω (8)

where

J(x(k), u(·)) =

N−1∑
i=0

{||x(k + i|k)||2Q + ||u(k + i|k)||2R
}

+

||x(k + N |k)||2P (9)

x(k + i|k) is the prediction of x at the future time k + i,
predicted at time k. Ω is the terminal constraint set near the
equilibrium point. The corresponding weighting matrices
Q, P, R are positive definite.

In the sequel, before introducing the SM-MPC algorithm,
some basic definitions and designing procedures about slid-
ing mode control are reviewed.

Definition 1 (Sliding mode)[18]. Sliding mode, also
called sliding motion, can be defined as the evolution of the

states of a system confined to a specified sub-manifold of
the state space with stable dynamics. Considering a special
case of the system with linear sliding surface s = Cx = 0,
where C ∈ Rm×n, we can define a null space as

S := N (C) = {x|s = Cx = 0, C ∈ Rm×n, x ∈ Rn}. (10)

Then, the sliding mode for this special case is the motion
of state in N (C).

Definition 2 (Quasi-sliding mode)[19]. The quasi-
sliding mode is the motion of state in the ∆ vicinity of
sliding surface, such that the system state, once entering
this band, never leaves it. Define

S∆ := {x∣∣ ||s|| = ||Cx|| 6 ∆} (11)

where the positive constant 2×∆ represents the bandwidth
of quasi-sliding mode.

Definition 3 (Equivalent control uequequeq
[20]). The equiv-

alent control is derived by solving
{

x(k + 1) = f(x(k), u(k))

s(k + 1) = 0
(12)

which is explicit with respect to state variables, i.e., ueq =
κ(x). For simplicity, we take a linear system with linear
sliding surface as a special example. Solving

{
x(k + 1) = Ax(k) + Bu(k)

Cx(k + 1) = 0
(13)

yields ueq(k) = −(CB)−1CAx(k).
For the nonlinear system (1), the procedure to design a

sliding mode controller can be listed as follows[20]:
1) Choose a sliding vector s(x) with stable sliding mode.

Sliding vector can be chosen as linear one with respect to
state, e.g., s = Cx. The parameter C can be easily con-
firmed for linear systems.

2) Calculate the state-feedback control action under the
reaching condition. With the predesigned asymptotic sta-
ble sliding surface s = 0, we can get the explicit state-
feedback control law which meets the reaching condition
sṡ < 0 (continuous-time system) or ||s(k + 1)|| < ||s(k)||
(discrete-time system).

Combining the sliding mode with MPC algorithm, Zhou
et al.[16] proposed the following algorithm:

P2(k, s, N) : arg min
u(k|k),··· ,u(k+N−1|k)

J(s(k), u(·)) (14)

s.t. (5), (6), (7), s(k + N |k) ∈ S. (15)

with

J(s(k), u(·)) =

N−1∑
i=0

{||s(k + i|k)||2Q + ||u(k + i|k)−

ueq(k + i|k)||2R
}

+ ||s(k + N |k)||2P̃ (16)

where P̃ is a positive definite weighting matrix.
In this algorithm, the sliding vector s is taken as a new

state. Then, it is stabilized by the dual-mode MPC strat-
egy, i.e.,

u(k) =

{
u∗(k|k), x(k) ∈ S

ueq(k), x(k) /∈ S
(17)
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where u∗(k|k) is the first input in the solution of optimiza-
tion problem (16), and ueq(k) is the equivalent control.

It is difficult to calculate the weighting matrix P̃ in the
terminal cost function ||s(k +N |k)||2

P̃
for the nonlinear sys-

tem. In the sequel, in order to get a more feasible SM-MPC
algorithm, we will provide a novel SM-MPC with contrac-
tive constraints.

3 Contractive SM-MPC algorithm

As seen from [8], adding auxiliary contractive constraint
to the optimization problem is an effective way to guaran-
tee closed-loop stability for MPC algorithms. Therefore, in
this paper, the contractive constraint is attached to the reg-
ular SM-MPC so that the contractive SM-MPC algorithm
is presented. The contractive SM-MPC algorithm enforces
the variable of sliding vector to decay to zero or other equi-
librium point step by step.

The proposed contractive SM-MPC algorithm solves the
following optimization problem:

P3(k, s,N) : arg min
u(k|k),··· ,u(k+N−1|k)

J(s(k), u(·)) (18)

s.t. (5), (6), (7),

||s(k + N |k)||P̂ 6 ρ ||s(k|k)||P̂ , ρ ∈ [0, 1) (19)

where the objective function J(s(k), u(·)) is defined as

J(s(k), u(·)) =

N∑
i=1

{||s(k + i|k)||2Q + ||u(k + i− 1|k)−

ueq(k + i− 1|k)||2R
}

. (20)

The specific procedure of contractive SM-MPC can be
described as follows.

Algorithm 1. Contractive SM-MPC algorithm
Step 1. Measure the initial value x(0). Give the sam-

pling time T > 0, the prediction horizon N ∈ Z+, the
contraction rate ρ ∈ [0, 1), the constraint sets X and U ,
and the weighting matrices Q > 0, R > 0, P̂ > 0.

Step 2. Set k = 0.
Step 3. Measure the value of state x(k) at time k. Solve

the optimal control problem P3(k, s, N), and get the control
sequence {u(k|k), · · · , u(k + N − 1|k)}.

Step 4. For the future N steps: k, · · · , k + N − 1, ap-
ply the corresponding precalculated control action in the
control sequence to the plant at the relevant time.

Step 5. Set k = k + N . Go to Step 2.
Remark 2. Compared with (14), the auxiliary contrac-

tive constraint (19) is adopted in the optimization problem
instead of the terminal constraint in (17). Unlike the dual-
mode strategy, this algorithm avoids the switching of the
controller. Moreover, the computational burden is allevi-
ated since the block optimization strategy is utilized, i.e.,
the optimization problem (18) will be solved at every N
steps.

4 Stability analysis

In this section, the stability of the contractive SM-MPC
algorithm will be proved. Before we give the main results,
the following assumptions should be made firstly[18].

Assumption 3 (The motion of sliding mode is sta-
ble). The predesigned sliding surface is a stable subspace
of the state space. When the system state is steered into
the sliding surface, it will keep in it by applying the calcu-
lated control sequence, and the system state will decay to
the equilibrium point asymptotically.

Remark 3. For the proposed algorithm, Assumption 3
is the most essential point for nonlinear systems to guar-
antee the closed-loop stability. The state trajectory can
be divided into two parts. The first part is the reaching
mode, it is the length of state trajectory which starts from
k = 0 to the time when state begins to enter into the slid-
ing surface. The second part is the sliding mode, which
is the trajectory of state in the sliding surface. Thus, we
need to assume that system in the sliding mode phase has
guaranteed closed-loop stability.

Assumption 4. For k ∈ [kj , kj+1], there exists a con-
stant parameter β ∈ (0,∞) so that the transient sliding
vector s(k) satisfies the inequality ||s(k)||P̂ 6 β||s(kj)||P̂ .

Remark 4. Assumption 4 assumes that the sliding
vector, from sampling time k to sampling time k + N , is
bounded. For the application on continuous-time systems,
the magnitude of sliding vector cannot be infinity if the
sampling time is small enough. Therefore, Assumption 4 is
reasonable.

Assumption 5 (Feasibility of the optimization
problem). There exists a constant parameter σ ∈ (0,∞)
such that for all x(kj) ∈ Bσ := {x ∈ Rn

∣∣||x|| 6 σ}, un-
der constraints (5)−(7), the optimization problem (18) with
cost function (16) is feasible for all k ∈ Z+. In other word,
for all x(kj) ∈ Bσ, we can find a value of ρ ∈ [0, 1) so that
all constraints on state and input variables will be satisfied
and the optimization problem is feasible.

Remark 5. For sliding vector s, there is always a bound
on it. Hence, it is reasonable in Assumption 4 to assume
that the sliding vector has its bound in every interval of
[kj , kj+1], j = 0, 1, · · · . In Assumption 5, the feasibility
of optimization problem (18) is assumed within a certain
region. Since the parameter ρ ∈ [0, 1), one can always find
a value of ρ which makes the optimization feasible.

Theorem 1. Suppose Assumptions 1−3 are satisfied.
Give rate ρ ∈ [0, 1). Let the parameters β ∈ (0,∞) and
σ ∈ (0,∞) satisfy Assumptions 4 and 5, respectively. Then,
for any x0 ∈ Bσ, the system will be stable if the resulting
trajectory of sliding vector satisfies the following inequality:

||s(k)||P̂ 6 β||s(0)||P̂ e−(1−ρ)[(k/N)−1], ∀k ∈ Z+. (21)

Proof. For k ∈ [kj , kj+1], the following inequalities can
be easily deduced from (19) and Assumption 4:

||s(kj)||P̂ 6 ρ||s(kj−1)||P̂ 6 · · · 6 ρj ||s(0)||P̂
||s(k)||P̂ 6 β||s(kj)||P̂ 6 βρj ||s(0)||P̂

where j = 0, 1, · · · .
Due to ρ ∈ [0, 1) and k ∈ Z+, we have

e(ρ−1) − ρ > 0 ⇔ ρk 6 e−(1−ρ)k.

Then,

||s(kj)||P̂ 6 ||s(0)||P̂ e−(1−ρ)j
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and

||s(k)||P̂ 6 β||s(0)||P̂ e−(1−ρ)j . (22)

For ∀k ∈ Z+, from (22), we can get

||s(k)||P̂ 6 β||s(0)||P̂ e−(1−ρ)×int( k
N

)

Due to int( k
N

) > ( k
N

)− 1, we have

βe−(1−ρ)×int( k
N

) 6 βe−(1−ρ)[( k
N

)−1]

Thus, we finally have (21). ¤
From Assumption 3, we can see that the sliding surface

has the pre-specified asymptotic stable sliding mode. When
the system state is forced into the sliding surface, the system
state will slide to the equilibrium point. Overall, this paper
is only an attempt to tackle the SM-MPC. Readers may
improve this result to a more general case.

Remark 6. For the continuous-time systems, under As-
sumption 3, the system will have asymptotically stable slid-
ing mode. Thus, if the system state is enforced into the
sliding surface by the calculated control moves, then it will
slide to the equilibrium point. From (21), we can see that
sliding vector s will decrease exponentially to zero, i.e., the
system state will reach the sliding surface. Ultimately, the
closed-loop stability is proved and the system is stable if
condition (21) is satisfied. Since the controlled system is
discrete, only quasi-sliding mode can be formed, i.e., the
system state can only be stabilized into a vicinity of the
equilibrium point.

5 Numerical simulation

The proposed contractive SM-MPC algorithm is applied
to the continuous stirred tank reactor (CSTR) system which
is borrowed from [21]. The corresponding model is de-
scribed by





ĊA =
q

V
(CAf − CA)− k0e

− E
RT CA

Ṫ =
q

V
(Tf − T ) +

(−∆H)

ρCp
k0e

− E
RT CA+

UA

V ρCp
(Tc − T )]

(23)

where CA is the concentration of the reactant A in the reac-
tor, T is the reactor temperature, and Tc is the temperature
of the coolant stream. The constraints are 280 K 6 Tc 6
370K, 280K 6 T 6 370K, 0 6 CA 6 1mol/L.

Choose the unstable equilibrium as Ceq
A = 0.5 mol/L,

T eq = 350K, and T eq
c = 300K. The corre-

sponding parameters for nominal operation are q =
100L/min, Tf = 350K, V = 100L, ρ = 1000 g/L, Cp =
0.239 J/g ·K, ∆H = −5× 104 J/mol, E/R = 8750K, k0 =
7.2 × 1010 min−1, and UA = 5 × 104 J/min ·K.

The objective is to regulate CA and T by manipulating
Tc. Thus, define the state vector x = [x1, x2]

T = [CA −
Ceq

A , T−T eq]T and the manipulated input u = Tc−T eq
c . By

substituting each parameter with specific value, (23) can be

discretized with sampling interval Ts = 0.05min as





x1(k + 1) =

x1(k) + Ts(0.5− x1(k)− 7.2× 1010×
e
− 8750

x2(k)+350 (x1(k) + 0.5))

x2(k + 1) =

x2(k) + Ts(−x2(k) + 1.5063× 1013×
e
− 8750

x2(k)+350 (x1(k) + 0.5))+

2.0921× 106 × (u(k)− x2(k)− 50)).

(24)

Let

Q = R = P̂ = P̃ = 1. (25)

The sliding vector s is designed as

s(k) = cx1(k) + x2(k) (26)

where c = −10.
From (12), the equivalent control is

ueq(k) =− 1

2.0921× 106 × Ts

{−Ts − 1.04605× 108+

2(Ts − 1)x1(k) + (1− Ts − Ts × 2.0921× 106)×
x2(k) + Ts(1.5135× 1013)× e

− 8750
x2(k)+350×

(x1(k) + 0.5)}. (27)

Choose N = 5, ρ = 0.6, and initial value x(0) =
[−0.4,−1.2]T in Algorithm 1. In order to clarify the advan-
tage of the proposed algorithm, we choose the same sliding
vector, prediction horizon and initial value of states as in Al-
gorithm 1 for the regular SM-MPC algorithm in [16]. Then,
the simulation results of each algorithm are shown in Table
1 and Figs. 1−2.

Table 1 Comparison of computation time

Algorithm Computation time

Contractive SM-MPC 1.9 s

Regular SM-MPC[16] 4.3 s

It can be seen from Fig. 1 that the system, controlled by
the proposed contractive SM-MPC algorithm, is asymptot-
ically stable, and all the hard constraints on state and input
variables are not violated. The sliding vector s in Fig. 1 has
decayed to zero in finite time. From Figs. 1−2 and Table 1,
we know that the contractive SM-MPC algorithm has bet-
ter control performance than regular SM-MPC algorithm.
Moreover, the computation time of contractive SM-MPC is
significantly decreased.

6 Conclusions

In this paper, a contractive SM-MPC algorithm which
adds a contractive sliding vector constraint into the regular
SM-MPC optimization problem is proposed. With the pre-
designed stable sliding surface, the system state decays to
the vicinity of the equilibrium point if the reaching condi-
tion has been satisfied. Hence, we take sliding vector as a
new variable and then stabilize it by MPC algorithm with
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contractive constraint. Compared with the existing SM-
MPC algorithm, the presented contractive SM-MPC algo-
rithm has less conservativeness and lighter computational

Fig. 1 Simulation results of contractive SM-MPC

Fig. 2 Simulation results of SM-MPC in [16]

burden. The result in this paper relies heavily on the as-
sumptions made on the nonlinearity in the vicinity of the
sliding surface. Readers are encouraged to improve the re-
sult to the more general cases. Indeed, it is difficult to
design the sliding surface with stable sliding mode for a
general nonlinear system. We believe that this research
topic is promising.
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