Skip to main content

Advertisement

Log in

Design and evaluation of a portable intra-operative unified-planning-and-guidance framework applied to distal radius fracture surgery

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

During a standard fracture reduction and fixation procedure of the distal radius, only fluoroscopic images are available for planning of the screw placement and monitoring of the drill bit trajectory. Our prototype intra-operative framework integrates planning and drill guidance for a simplified and improved planning transfer.

Methods

Guidance information is extracted using a video camera mounted onto a surgical drill. Real-time feedback of the drill bit position is provided using an augmented view of the planning X-rays. We evaluate the accuracy of the placed screws on plastic bones and on healthy and fractured forearm specimens. We also investigate the difference in accuracy between guided screw placement versus freehand. Moreover, the accuracy of the real-time position feedback of the drill bit is evaluated.

Results

A total of 166 screws were placed. On 37 plastic bones, our obtained accuracy was \(1.01\,\pm \,0.56\) mm, \(3.74^\circ \,\pm \,4.39^\circ \) and \(1.70^\circ \,\pm \,1.35^\circ \) in tip position and orientation (azimuth and elevation), respectively. On the three healthy forearm specimens, our obtained accuracy was \(1.63 \pm 0.91\) mm, \(5.85^\circ \pm 4.93^\circ \) and \(3.48^\circ \pm 3.07^\circ \). On the two fractured specimens, we attained: \(1.39 \pm 0.47\) mm, \(2.93^\circ \pm 1.83^\circ \) and \(2.14^\circ \pm 1.84^\circ \). When screw plans were applied freehand (without our guidance system), the achieved accuracy was \(1.73 \pm 0.82\) mm, \(6.01^\circ \pm 4.94^\circ \,\mathrm{{and}}\, 3.52^\circ \pm 2.48^\circ \), while when they were transferred under guidance, we obtained \(0.89 \pm 0.37\) mm, \(2.85^\circ \pm 2.57^\circ \,\mathrm{{and}}\, 1.49^\circ \pm 1.17^\circ \).

Conclusions

Our results show that our framework is expected to increase the accuracy in screw positioning and to improve robustness w.r.t. freehand placement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Al-Rashid M, Theivendran K, Craigen M (2006) Delayed ruptures of the extensor tendon secondary to the use of volar locking compression plates for distal radial fractures. J Bone Joint Surg Br 88(12):1610–1612

    Article  CAS  PubMed  Google Scholar 

  2. Arora R, Lutz M, Hennerbichler A, Krappinger D, Espen D, Gabl M (2007) Complications following internal fixation of unstable distal radius fracture with a palmar locking-plate. J Orthop Trauma 21(5):316–322

    Article  PubMed  Google Scholar 

  3. Bose R (2008) Information theory, coding and cryptography. Tata McGraw-Hill Education, Noida

    Google Scholar 

  4. Bose RC, Ray-Chaudhuri DK (1960) On a class of error correcting binary group codes. Inf Control 3(1):68–79

    Article  Google Scholar 

  5. Cho J, Sung W (2009) Efficient software-based encoding and decoding of BCH codes. IEEE Trans Comput 58(7):878–889

    Article  Google Scholar 

  6. Diotte B, Fallavollita P, Wang L, Weidert S, Thaller PH, Euler E, Navab N (2012) Radiation-free drill guidance in interlocking of intramedullary nails. In: MICCAI, Part I. LNCS, vol 7510, pp 18–25

  7. Egli A, Kleinszig G, John A, Fernandez A, Cardelino J (2013) Pose estimation quality assessment for intra-operative image guidance systems. In: SPIE medical imaging, vol 86711

  8. Fiala M (2005) ARTag fiducial marker system applied to vision based spacecraft docking. In: IROS, workshop on robot vision for space applications, pp 35–40

  9. Franke J, Vetter S, Mühlhäuser I, Grützner P, von Recum J (2013) Virtual implant planning system: first clinical results. Bone Joint J Orthop Proc Suppl 95(SUPP 28):76–76

    Google Scholar 

  10. Giannoudis PV, Campbell D, Meier R (2006) Fractures of the distal radius. In: Giannoudis PV, Pape HC (eds) Practical procedures in orthopaedic trauma surgery. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  11. Jenny JY, Miehlke RK, Giurea A (2008) Learning curve in navigated total knee replacement. A multi-centre study comparing experienced and beginner centres. Knee 15(2):80–84

    Article  PubMed  Google Scholar 

  12. Joseph SJ, Harvey JN (2011) The dorsal horizon view: detecting screw protrusion at the distal radius. J Hand Surg 36(10):1691–1693

    Article  Google Scholar 

  13. Koutenaei BA, Guler O, Wilson E, Thoranaghatte RU, Oetgen M, Navab N, Cleary K (2014) Improved screw placement for slipped capital femoral epiphysis (SCFE) using robotically-assisted drill guidance. In: MICCAI, Part I. LNCS, vol 8673, pp 488–495

  14. Kreuder F (2009) 2D–3D-Registrierung mit Parameterentkopplung für die Patientenlagerung in der Strahlentherapie. Dissertation, vol 7. KIT Scientific Publishing

  15. Lu C, Hager G, Mjolsness E (2000) Fast and globally convergent pose estimation from video images. IEEE Trans Pattern Anal Mach Intell 22(6):610–622

    Article  Google Scholar 

  16. Magaraggia J, Kleinszig G, Graumann R, Angelopoulou E, Hornegger J (2013) A video guided solution for screw insertion in orthopedic plate fixation. In: SPIE medical imaging, vol 86710

  17. Magaraggia J, Kleinszig G, Wei W, Weiten M, Graumann R, Angelopoulou E, Hornegger J (2014) On the accuracy of a video-based drill-guidance solution for orthopedic and trauma surgery: preliminary results. In: SPIE medical imaging, vol 903610

  18. Magaraggia J, Wei W, Weiten M, Kleinszig G, Vetter S, Franke J, Barth K, Angelopoulou E, Hornegger J (2015) A portable intra-operative framework applied to distal radius fracture surgery. In: MICCAI, Part I. LNCS, pp 323–330

  19. Malepati H (2010) Digital media processing: DSP algorithms using C. Newnes, Burlington

    Google Scholar 

  20. Markley FL, Cheng Y, Crassidis JL, Oshman Y (2007) Averaging quaternions. J Guid Control Dyn 30(4):1193–1197

    Article  Google Scholar 

  21. Marziliano P, Dufaux F, Winkler S, Ebrahimi T (2002) A no-reference perceptual blur metric. In: International conference on image processing. IEEE, vol 3, pp 57–60

  22. McKay SD, MacDermid JC, Roth JH, Richards RS (2001) Assessment of complications of distal radius fractures and development of a complication checklist. J Hand Surg 26(5):916–922

    Article  CAS  Google Scholar 

  23. Nielsen MA, Chuang IL (2010) Quantum computation and quantum information. Cambridge University Press, Cambridge

    Book  Google Scholar 

  24. Olson E (2011) AprilTag: a robust and flexible visual fiducial system. In: IEEE international conference on robotics and automation. IEEE, pp. 3400–3407

  25. Pichler W, Grechenig W, Clement H, Windisch G, Tesch N (2009) Perforation of the third extensor compartment by the drill bit during palmar plating of the distal radius. J Hand Surg Eur Vol 34(3):333–335

  26. Rikli DA, Campbell DA (2007) Distal radius and wrist. In: Rüedi TP, Buckley RE, Renner, Moran CG (eds) AO principles of fracture management. AO Publishing, Davos, Swiss

  27. Schichor C, Schöller K, Tanner P, Uhl E, Goldbrunner R, Tonn JC, Witte J (2008) Magnetically guided neuronavigation of flexible instruments in shunt placement, transsphenoidal procedures, and craniotomies. Oper Neurosurg 63(1):ONS121–ONS128

    Article  Google Scholar 

  28. Schweighofer G, Pinz A (2006) Robust pose estimation from a planar target. IEEE Trans Pattern Anal Mach Intell 28(12):2024–2030

    Article  PubMed  Google Scholar 

  29. Simic PM, Placzek JD (2011) Distal radius fractures. In: Stannard JP, Schmidt AH, Kregor PJ (eds) Surgical treatment of orthopaedic trauma. Thieme

  30. Sügün T, Karabay N, Gürbüz Y, Özaksar K, Toros T, Kayalar M (2011) Screw prominences related to palmar locking plating of distal radius. J Hand Surg Eur Vol 36(4):320–324

    Article  PubMed  Google Scholar 

  31. Trucco E, Verri A (1998) Introductory techniques for 3-D computer vision, vol 201. Prentice Hall, Englewood Cliffs

    Google Scholar 

  32. Vetter S, Mühlhäuser I, von Recum J, Grützner PA, Franke J (2014) Validation of a virtual implant planning system (VIPS) in distal radius fractures. Bone Joint J Orthop Proc Suppl 96:50–50

    Google Scholar 

  33. Wagner D, Schmalstieg D (2007) Artoolkitplus for pose tracking on mobile devices. In: CVWW, 12th computer vision winter workshop

  34. Zhang X (2015) VLSI architectures for modern error-correcting codes. CRC Press, Boca Raton

    Book  Google Scholar 

  35. Zhao Y, Cachard C, Liebgott H (2013) Automatic needle detection and tracking in 3D ultrasound using an ROI-based RANSAC and Kalman method. Ultrason Imaging 35(4):283–306

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Training Group 1773 “Heterogeneous Image Systems”, funded by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Magaraggia.

Ethics declarations

Conflict of interest

J. Magaraggia, J. Hornegger, E. Angelopoulou, S. Vetter, and J. Franke have no conflict of interest. W. Wei, M. Weiten, G. Kleinszig and K. Barth are employees of Siemens Healthcare GmbH. At the time this work was performed, A. John and A. Egli were funded by Siemens AG. The studies were carried out with the support from Siemens Healthcare GmbH, Erlangen, Germany.

Additional information

The presented method is investigational use and is limited by law to investigational use. It is not commercially available and its future availability cannot be ensured. The source code for the presented methods is not publicly or commercially available and its future availability cannot be ensured.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magaraggia, J., Wei, W., Weiten, M. et al. Design and evaluation of a portable intra-operative unified-planning-and-guidance framework applied to distal radius fracture surgery. Int J CARS 12, 77–90 (2017). https://doi.org/10.1007/s11548-016-1432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-016-1432-1

Keywords

Navigation