Skip to main content
Log in

Denominator identities for finite-dimensional Lie superalgebras and Howe duality for compact dual pairs

  • Original Articles
  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

We provide formulas for the denominator and superdenominator of a basic classical type Lie superalgebra for any set of positive roots. We establish a connection between certain sets of positive roots and the theory of reductive dual pairs of real Lie groups, and, as an application of these formulas, we recover the Theta correspondence for compact dual pairs. Along the way we give an explicit description of the real forms of basic classical type Lie superalgebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Adams, The theta correspondence over \({\mathbb {R}}\) , In: Harmonic Analysis, Group Representations, Automorphic Forms and Invariant Theory, Lecture Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 12, World Sci. Publ., Hackensack, NJ, 2007, pp. 1–37.

  2. Enright T.J.: Analogues of Kostant’s \({\mathfrak {u}}\) -cohomology formulas for unitary highest weight modules. J. Reine Angew. Math. 392, 27–36 (1988)

    MathSciNet  MATH  Google Scholar 

  3. Enright T.J., Willenbring J.F.: Hilbert series, Howe duality and branching for classical groups. Ann. of Math. (2) 159, 337–375 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Gorelik, Weyl denominator identity for finite-dimensional Lie superalgebras, arXiv:0905.1181.

  5. R. Howe, θ-series and invariant theory, In: Automorphic Forms, Representations and L-Functions. Part 1, Proc. Sympos. Pure Math., 33, Amer. Math. Soc., Providence, RI, 1979, pp. 275–285.

  6. Howe R.: Remarks on classical invariant theory. Trans. Amer. Math. Soc. 313, 539–570 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Howe R.: Trascending classical invariant theory. J. Amer. Math. Soc. 2, 535–552 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Iohara K., Koga Y.: Central extension of Lie superalgebras. Comment. Math. Helv. 76, 110–154 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kac V.G.: Lie superalgebras. Advances in Math. 26, 8–96 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  10. V.G. Kac, Representations of classical Lie superalgebras, In: Differential Geometrical Methods in Mathematical Physics. II, Proc. Conf., Univ. Bonn, Bonn, 1977, Lecture Notes in Math., 676, Springer-Verlag, 1978, pp. 597–626.

  11. Kac V.G.: Infinite-Dimensional Lie Algebras. Third ed.. Cambridge Univ. Press, Cambridge (1990)

    Book  Google Scholar 

  12. Kac V.G., Möseneder Frajria P., Papi P.: On the kernel of the affine Dirac operator. Mosc. Math. J. 8, 759–788 (2008)

    MathSciNet  MATH  Google Scholar 

  13. V.G. Kac, P. Möseneder Frajria and P. Papi, Denominator identities for Lie superalgebras (extended abstract), Proceedings of the FPSAC 2010, 839–850.

  14. V.G. Kac and M. Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, In: Lie Theory and Geometry, Progr. Math., 123, Birkhäuser Boston, Boston, MA, 1994, pp. 415–456.

  15. Kashiwara M., Vergne M.: On the Segal–Shale–Weil representations and harmonic polynomials. Invent. Math. 44, 1–47 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kostant B.: Lie algebra cohomology and the generalized Borel–Weil theorem. Ann. of Math. (2) 74, 329–387 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li J.-S., Paul A., Tan E.-C., Zhu C.-B.: The explicit duality correspondence of (Sp(p, q), O*(2n)). J. Funct. Anal. 200, 71–100 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Parker M.: Classification of real simple Lie superalgebras of classical type. J. Math. Phys. 21, 689–697 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Penkov I., Serganova V.V.: Representations of classical Lie superalgebras of type I. Indag. Math. (N.S.) 3, 419–466 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Serganova V.V.: Automorphisms of simple Lie superalgebras. Math. USSR-Izv. 24, 539–551 (1985)

    Article  MATH  Google Scholar 

  21. Serganova V.V.: Classification of simple real Lie superagebras and symmetric superspaces. Funktsional. Anal. i Prilozhen. 17(3), 46–54 (1983)

    MathSciNet  Google Scholar 

  22. van de Leur J.W.: A classification of contragredient Lie superalgebras of finite growth. Comm. Algebra 17, 1815–1841 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gorelik.

Additional information

Communicated by: Yasuyuki Kawahigashi

The first author is supported by the Minerva foundation with funding from the Federal German Ministry for Education and Research.

The second author is partially supported by an NSF grant and by an ERC advanced grant.

About this article

Cite this article

Gorelik, M., Kac, V.G., Möseneder Frajria, P. et al. Denominator identities for finite-dimensional Lie superalgebras and Howe duality for compact dual pairs. Jpn. J. Math. 7, 41–134 (2012). https://doi.org/10.1007/s11537-012-1104-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-012-1104-z

Keywords and phrases

Mathematics Subject Classification (2010)

Navigation