Skip to main content
Log in

Fusion systems and localities

  • Published:
Acta Mathematica

Abstract

We introduce objective partial groups, of which the linking systems and p-local finite groups of Broto, Levi, and Oliver, the transporter systems of Oliver and Ventura, and the \({\mathcal{F}}\)-localities of Puig are examples, as are groups in the ordinary sense. As an application we show that if \({\mathcal{F}}\) is a saturated fusion system over a finite p-group then there exists a centric linking system \({\mathcal{L}}\) having \({\mathcal{F}}\) as its fusion system, and that \({\mathcal{L}}\) is unique up to isomorphism. The proof relies on the classification of the finite simple groups in an indirect and—for that reason—perhaps ultimately removable way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aschbacher, M., Finite Group Theory. Cambridge Studies in Advanced Mathematics, 10. Cambridge Univ. Press, Cambridge, 1986.

  2. Aschbacher M.: Normal subsystems of fusion systems. Proc. Lond. Math. Soc., 97, 239–271 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aschbacher, M., Kessar, R. & Oliver, B., Fusion Systems in Algebra and Topology. London Mathematical Society Lecture Note Series, 391. Cambridge Univ. Press, Cambridge, 2011.

  4. Aschbacher M., Seitz G. M.: Involutions in Chevalley groups over fields of even order. Nagoya Math. J., 63, 1–91 (1976)

    MathSciNet  MATH  Google Scholar 

  5. Benson, D. J., Cohomology of sporadic groups, finite loop spaces, and the Dickson invariants, in Geometry and Cohomology in Group Theory (Durham, 1994), London Mathematical Society Lecture Note Series, 252, pp. 10–23. Cambridge Univ. Press, Cambridge, 1998.

  6. Broto C., Castellana N., Grodal J., Levi R., Oliver B.: Subgroup families controlling p-local finite groups. Proc. Lond. Math. Soc., 91, 325–354 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Broto C., Levi R., Oliver B.: The homotopy theory of fusion systems. J. Amer. Math. Soc., 16, 779–856 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bundy D., Hebbinghaus N., Stellmacher B.: The local C(G, T) theorem. J. Algebra, 300, 741–789 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chermak A.: Quadratic action and the \({\mathcal{P}(G, V)}\) -theorem in arbitrary characteristic. J. Group Theory, 2, 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goldschmidt D.M.: A conjugation family for finite groups. J. Algebra, 16, 138–142 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gorenstein, D., Finite Groups. Harper & Row, New York, 1968.

  12. Gorenstein, D., Lyons, R. & Solomon, R., The Classification of the Finite Simple Groups. Mathematical Surveys and Monographs, 40. Amer. Math. Soc., Providence, RI, 1994.

  13. Kurzweil, H. & Stellmacher, B., The Theory of Finite Groups. Universitext. Springer, New York, 2004.

  14. Meierfrankenfeld U., Stellmacher B.: The other \({\mathcal{P}(G, V)}\) -theorem. Rend. Semin. Mat. Univ. Padova, 115, 41–50 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Meierfrankenfeld U., Stellmacher B.: The general FF-module theorem. J. Algebra, 351, 1–63 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Oliver B., Ventura J.: Extensions of linking systems with p-group kernel. Math. Ann., 338, 983–1043 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Puig L.: Frobenius categories. J. Algebra, 303, 309–357 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Puig L., Frobenius Categories versus Brauer Blocks. Progress in Mathematics, 274. Birkhäuser, Basel, 2009.

  19. Stancu, R., Equivalent definitions of fusion systems. Preprint, 2004.

  20. Thompson J. G.: A replacement theorem for p-groups and a conjecture. J. Algebra, 13, 149–151 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  21. Timmesfeld F.: A remark on Thompson’s replacement theorem and a consequence. Arch. Math. (Basel), 38, 491–495 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Chermak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chermak, A. Fusion systems and localities. Acta Math 211, 47–139 (2013). https://doi.org/10.1007/s11511-013-0099-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-013-0099-5

Keywords

Navigation