Skip to main content
Log in

Encapsulation and Delivery of Crystalline Hydrophobic Nutraceuticals using Nanoemulsions: Factors Affecting Polymethoxyflavone Solubility

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Polymethoxyflavones (PMF) isolated from citrus peel have potent anti-cancer activity, however their utilization as functional ingredients in foods is currently limited because of their high melting point and poor water-solubility. The influence of oil type and concentration, hydrophilic polymer addition, and simulated intestinal conditions on PMF (5-hydroxytangeretin) solubility in solutions and nanoemulsions was examined. The saturation concentration of PMF in water was relatively low (0.93 μM), but could be increased appreciably by adding certain hydrophilic polymers: polyethylene glycol (PEG) and β-cyclodextrin (CD) were ineffective at increasing solubility, but poly(vinyl alcohol) (PVA) and hydroxypropyl methylcellulose (HPMC) greatly enhanced solubility (e.g., > 6 μM for 0.5 % polymer). PMF was more soluble in medium chain triglycerides (MCT, 6.1 mM) than long chain triglycerides (LCT, 4.2 mM). The encapsulation efficiency of PMF in oil-in-water nanoemulsions was higher when MCT was used as the oil phase rather than LCT, and could be increased by increasing the oil droplet content. The solubility of PMF in simulated small intestinal fluids was increased by solubilization in bile micelles and mixed micelles formed during lipid digestion. These results have important implications for the development of functional foods fortified with bioactive hydrophobic components aimed at improving human health and wellness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Brouwers, M.E. Brewster, P. Augustijns, J. Pharm. Sci. 98(8), 2549–2572 (2009)

    Article  CAS  Google Scholar 

  2. J. Bevernage, J. Brouwers, S. Clarysse et al., J. Pharm. Sci. 99(11), 4525–4534 (2010)

    Article  CAS  Google Scholar 

  3. K. Kleberg, J. Jacobsen, A. Mullertz, J. Pharm, Pharmacol. 62(11), 1656–1668 (2010)

    CAS  Google Scholar 

  4. Y. Li, J.K. Zheng, H. Xiao, D.J. McClements, Food Hydrocolloids. 27(2), 517–528 (2012)

    Article  CAS  Google Scholar 

  5. Y. Kawabata, K. Wada, M. Nakatani, S. Yamada, S. Onoue, Int. J. Pharm. 420(1), 1–10 (2011)

    Article  CAS  Google Scholar 

  6. J.M. Wang, T.J. Hou, Comb. Chem. High. Throughput. Screen. 14(5), 328–338 (2011)

    Article  CAS  Google Scholar 

  7. M.E. Brewster, T. Loftsson, Adv. Drug. Deliv. Rev. 59(7), 645–666 (2007)

    Article  CAS  Google Scholar 

  8. D.B. Warren, H. Benameur, C.J.H. Porter, C.W. Pouton, J. Drug. Target. 18(10), 704–731 (2010)

    Article  CAS  Google Scholar 

  9. R.H. Muller, C.M. Keck, J. Biotechnol. 113(1–3), 151–170 (2004)

    Article  CAS  Google Scholar 

  10. D.J. Hauss, Adv. Drug. Deliv. Rev. 59(7), 667–676 (2007)

    Article  CAS  Google Scholar 

  11. K. Ziani, Y. Fang, D.J. McClements, Food. Chem. 134(2), 1106–1112 (2012)

    Article  CAS  Google Scholar 

  12. J.M. Miller, A. Dahan, Int. J. Pharm. 430(1–2), 388–391 (2012)

    Article  CAS  Google Scholar 

  13. J. Bevernage, T. Forier, J. Brouwers, J. Tack, P. Annaert, P. Augustijns, Mol. Pharm. 8(2), 564–570 (2011)

    Article  CAS  Google Scholar 

  14. Y. Tian, S.R. Mao, Expert. Opin. Drug. Deliv. 9(6), 687–700 (2012)

    Article  CAS  Google Scholar 

  15. M.A. Alhnan, S. Murdan, A.W. Basit, Int. J. Pharm. 416(1), 55–60 (2011)

    Article  CAS  Google Scholar 

  16. A. Dahan, A. Hoffman, Pharm. Res. 23(9), 2165–2174 (2006)

    Article  CAS  Google Scholar 

  17. S.A. Mitchell, T.D. Reynolds, T.P. Dasbach, Int. J. Pharm. 250(1), 3–11 (2003)

    Article  CAS  Google Scholar 

  18. F. Tajarobi, A. Larsson, H. Matic, S. Abrahmsén-Alami, Eur. J. Pharm. Biopharm. 78(1), 125–133 (2011)

    Article  CAS  Google Scholar 

  19. D.E. Alonzo, S. Raina, D. Zhou, Y. Gao, G.G.Z. Zhang, L.S. Taylor, Cryst. Growth. Des. 12(3), 1538–1547 (2012)

    Article  CAS  Google Scholar 

  20. S. Li, C.-Y. Lo, C.-T. Ho, J. Agric, Food Chem. 54(12), 4176–4185 (2006)

    Article  CAS  Google Scholar 

  21. T. Hirata, M. Fujii, K. Akita et al., Bioorg. Med. Chem. 17(1), 25–28 (2009)

    Article  CAS  Google Scholar 

  22. H. Xiao, C.S. Yang, S. Li, H. Jin, C.-T. Ho, T. Patel, Mol. Nutr. Food. Res. 53(3), 398–406 (2009)

    Article  CAS  Google Scholar 

  23. S. Li, M.-H. Pan, C.-Y. Lo et al., J. Funct. Foods. 1(1), 2–12 (2009)

    Article  CAS  Google Scholar 

  24. C.-S. Lai, S. Li, C.-Y. Chai et al., Carcinogenesis 29(12), 2415–2424 (2008)

    Article  CAS  Google Scholar 

  25. C.-S. Lai, S. Li, C.-Y. Chai et al., Carcinogenesis 28(12), 2581–2588 (2007)

    Article  CAS  Google Scholar 

  26. I.N. Sergeev, C.-T. Ho, S. Li, J. Colby, S. Dushenkov, Mol. Nutr. Food. Res. 51(12), 1478–1484 (2007)

    Article  CAS  Google Scholar 

  27. I.N. Sergeev, S. Li, J. Colby, C.-T. Ho, S. Dushenkov, Life Sci. 80(3), 245–253 (2006)

    Article  CAS  Google Scholar 

  28. T. Kinoshita, K. Firman, Phytochemistry 42(4), 1207–1210 (1996)

    Article  CAS  Google Scholar 

  29. P. Dong, P. Qiu, Y. Zhu et al., J. Chromatogr. A 1217(5), 642–647 (2010)

    Article  CAS  Google Scholar 

  30. Y. Li, M. Hu, D.J. McClements, Food Chem. 126(2), 498–505 (2011)

    Article  CAS  Google Scholar 

  31. P.J. Sassene, M.M. Knopp, J.Z. Hesselkilde et al., J. Pharm. Sci. 99(12), 4982–4991 (2010)

    Article  CAS  Google Scholar 

  32. D.J. McClements, Adv. Coll. Int. Sci. 174, 1–30 (2012)

    Article  CAS  Google Scholar 

  33. P. Gao, B.D. Rush, W.P. Pfund et al., J. Pharm. Sci. 92(12), 2386–2398 (2003)

    Article  CAS  Google Scholar 

  34. S. Li, C. Pollock-Dove, L.C. Dong, J. Chen, A.A. Creasey, W.G. Dai, Mol. Pharm. 9(5), 1100–1108 (2012)

    CAS  Google Scholar 

  35. F. Tajarobi, A. Larsson, H. Matic, S. Abrahmsen-Alami, Eur. J. Pharm. Biopharm. 78(1), 125–133 (2011)

    Article  CAS  Google Scholar 

  36. Y.N. Yin, P.S. Chow, R.B.H. Tan, Mol. Pharm. 8(5), 1910–1918 (2011)

    Article  Google Scholar 

  37. C. Budke, T. Koop, ChemPhysChem 7(12), 2601–2606 (2006)

    Article  CAS  Google Scholar 

  38. T. Inada, P.R. Modak, Chem. Eng. Sci. 61(10), 3149–3158 (2006)

    Article  CAS  Google Scholar 

  39. D.J. McClements, Ann. Rev. Food Sci. Tech. 1(1), 241–269 (2010)

    Article  CAS  Google Scholar 

  40. D.J. McClements, Soft Matter 7(6), 2297–2316 (2011)

    Article  CAS  Google Scholar 

  41. D.J. McClements, J. Rao, Crit. Rev. Food. Sci. Nutr. 51(4), 285–330 (2011)

    Article  CAS  Google Scholar 

  42. R. Pal, Curr. Op. Colloid Int. Sci. 16(1), 41–60 (2011)

    Article  CAS  Google Scholar 

  43. D.J. McClements, H. Xiao, Food Func. 3(3), 202–220 (2012)

    Article  CAS  Google Scholar 

  44. S. Salentinig, L. Sagalowicz, M.E. Leser, C. Tedeschi, O. Glatter, Soft Matter 7(2), 650–661 (2011)

    Article  CAS  Google Scholar 

  45. T.S. Wiedmann, L. Kamel, J. Pharm, Sci. 91(8), 1743–1764 (2002)

    CAS  Google Scholar 

  46. C.J.H. Porter, W.N. Charman, Adv. Drug. Deliv. Rev. 50, S127–S147 (2001)

    Article  CAS  Google Scholar 

  47. C.J.H. Porter, N.L. Trevaskis, W.N. Charman, Nat. Rev. Drug. Discov. 6(3), 231–248 (2007)

    Article  CAS  Google Scholar 

  48. C.J.H. Porter, K.M. Wasan, Adv. Drug. Deliver. Rev. 60(6), 615–616 (2008)

    Article  CAS  Google Scholar 

  49. T. Huo, M.G. Ferruzzi, S.J. Schwartz, M.L. Failla, J. Ag, Food Chem. 55(22), 8950–8957 (2007)

    Article  CAS  Google Scholar 

  50. S.K. Thakkar, B. Maziya-Dixon, A.G.O. Dixon, M.L. Failla, J. Nutr. 137(10), 2229–2233 (2007)

    CAS  Google Scholar 

  51. H. Kohno, S. Yoshitani, Y. Tsukio et al., Life Sci. 69(8), 901–913 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by an EPA-NSF-NIFA (AFRI) joint grant (2010-05266) program, NIH grant CA139174, a USDA-AFRI grant, a special call grant from Massachusetts Center for Agriculture, and a CVIP grant from the University of Massachusetts Amherst. The authors have no declared conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Julian McClements.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Xiao, H. & McClements, D.J. Encapsulation and Delivery of Crystalline Hydrophobic Nutraceuticals using Nanoemulsions: Factors Affecting Polymethoxyflavone Solubility. Food Biophysics 7, 341–353 (2012). https://doi.org/10.1007/s11483-012-9272-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-012-9272-1

Keywords

Navigation