Skip to main content
Log in

Tailoring Infrared Refractory Plasmonic Material to Broadband Circularly Polarized Thermal Emitter

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Circularly polarized (CP) thermal emission possesses huge application value in the fields of infrared detecting and polarimetric thermal imaging; however, the naturally occurring infrared source is incoherent and unpolarized. In this paper, we designed a broadband CP source adaptive for high temperature in consideration of the collision frequency of the electrons increasing with temperature. Compared with the structure proposed before, “I”-shaped resonators based on refractory plasmonic material generate the linearly polarized (LP) emission and the dielectric quarter-wave plate enhances the degree of emitted CP by suppressing the parasitic radiation. More than 80 % right-handed circularly polarized (RCP) emissivity in wavelengths ranging from 3.28 to 4.81 μm within 706 to 884 K is theoretically achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hesketh PJ, Zemel JN, Gebhart B (1986) Organ pipe radiant modes of periodic micromachined silicon surfaces. Nature 324:549

    Article  CAS  PubMed  Google Scholar 

  2. Kreiter M, Oster J, Sambles R, Herminghaus S, Mittler-Neher S, Knoll W (1999) Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons. Opt Commun 168:117–122

    Article  CAS  Google Scholar 

  3. Hesketh PJ, Zemel JN, Gebhart B (1988) Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: angular variation. Phys Rev B Condens Matter 37:10803–10813

    Article  CAS  PubMed  Google Scholar 

  4. Ueba Y, Takahara J, Nagatsuma T (2011) Thermal radiation control in the terahertz region using the spoof surface plasmon mode. Opt Lett 36:909–911

    Article  PubMed  Google Scholar 

  5. Dahan N, Niv A, Biener G, Gorodetski Y, Kleiner V, Hasman E (2008) Extraordinary coherent thermal emission from SiC due to coupled resonant cavities. J Heat Transf 130:112401

    Article  CAS  Google Scholar 

  6. Setala T, Kaivola M, Friberg AT (2002) Degree of polarization in near fields of thermal sources: effects of surface waves. Phys Rev Lett 88:123902

    Article  CAS  PubMed  Google Scholar 

  7. Lee BJ, Zhang ZM (2007) Coherent thermal emission from modified periodic multilayer structures. J Heat Transf 129:17–26

    Article  CAS  Google Scholar 

  8. Enoch S, Simon J-J, Escoubas L, Elalmy Z, Lemarquis F, Torchio P, Albrand G (2005) Simple layer-by-layer photonic crystal for the control of thermal emission. Appl Phys Lett 86:261101

    Article  CAS  Google Scholar 

  9. Garin M, Trifonov T, Hernández D, Rodriguez A, Alcubilla R (2010) Thermal emission of macroporous silicon chirped photonic crystals. Opt Lett 35:3348–3350

    Article  CAS  PubMed  Google Scholar 

  10. Celanovic I, Perreault D, Kassakian J (2005) Resonant-cavity enhanced thermal emission. Phys Rev B 72:075127

    Article  CAS  Google Scholar 

  11. Pu M, Wang M, Hu C, Huang C, Zhao Z, Wang Y, Luo X (2012) Engineering heavily doped silicon for broadband absorber in the terahertz regime. Opt Express 20:25513–25519

    Article  CAS  PubMed  Google Scholar 

  12. Song M, Yu H, Hu C, Pu M, Zhang Z, Luo J, Luo X (2013) Conversion of broadband energy to narrowband emission through double-sided metamaterials. Opt Express 21:32207–32216

    Article  CAS  PubMed  Google Scholar 

  13. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  CAS  PubMed  Google Scholar 

  14. Rephaeli E, Fan S (2008) Tungsten black absorber for solar light with wide angular operation range. Appl Phys Lett 92:211107

    Article  CAS  Google Scholar 

  15. Diem M, Koschny T, Soukoulis C (2009) Wide-angle perfect absorber/thermal emitter in the THz regime. Phys Rev B 79:033101

    Article  CAS  Google Scholar 

  16. Wang Y, Song M, Pu M, Gu Y, Hu C, Zhao Z, Wang C, Yu H, Luo X (2016) Stacked graphene for tunable terahertz absorber with customized bandwidth. Plasmonics. doi:10.1007/s11468-015-0162-5

  17. Song M, Wang C, Zhao Z, Pu M, Liu L, Zhang W, Yu H, Luo X (2016) Nanofocusing beyond the near-field diffraction limit via plasmonic Fano resonance. Nanoscale 8:1635–1641

    Article  CAS  PubMed  Google Scholar 

  18. Greffet J-J, Carrminati R, Joulain K, Mulet JP, Mainguy S, Chen Y (2002) Coherent emission of light by thermal sources. Nature 416:61–64

    Article  CAS  PubMed  Google Scholar 

  19. Laroche M, Arnold C, Marquier F, Carminati R, Greffet J-J (2005) Highly directional radiation generated by a tungsten thermal source. Opt Lett 30:2623–2625

    Article  CAS  PubMed  Google Scholar 

  20. Ginn J, Shelton D, Krenz P, Lail B, Boreman GD (2010) Polarized infrared emission using frequency selective surfaces. Opt Express 18:4557–4563

    Article  CAS  PubMed  Google Scholar 

  21. Wadsworth SL, Clem PG, Branson ED, Boreman GD (2011) Broadband circularly-polarized infrared emission from multilayer metamaterials. Opt Mater Express 1:466–479

    Article  CAS  Google Scholar 

  22. Liu X, Tyler T, Starr T, Starr AF, Padilla WJ (2011) Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107:045901

    Article  CAS  PubMed  Google Scholar 

  23. Etchegoin PG, Le Ru EC, Mayer M (2006) An analytic model for the optical properties of gold. J Chem Phys 125:164705

    Article  CAS  PubMed  Google Scholar 

  24. Vial A, Grimault A-S, Macias D, Barchiesi D, de la Chapelle ML (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71:085416

    Article  CAS  Google Scholar 

  25. Aksyutov L (1977) Temperature dependence of the optical constants of tungsten and gold. J Appl Spectrosc 26:656–660

    Article  Google Scholar 

  26. Jackson JD (1976) Classical electrodynamics, Third edth edn., pp 309–310

    Google Scholar 

  27. Gunnarsson O, Calandra M, Han JE (2003) Colloquium: saturation of electrical resistivity. Rev Mod Phys 75:1085–1099

    Article  Google Scholar 

  28. Nordin GP, Deguzman PC (1999) Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region. Opt Express 5:163–168

    Article  CAS  PubMed  Google Scholar 

  29. Passilly N, Ventola K, Karvinen P, Turunen J, Tervo J (2008) Achromatic phase retardation by subwavelength gratings in total internal reflection. J Opt A Pure Appl Opt 10:015001

    Article  CAS  Google Scholar 

  30. Yi DE, Yan YB, Liu HT, Lu S, Jin GF (2003) Broadband achromatic phase retarder by subwavelength grating. Opt Commun 227:49–55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Funds (No. 61575032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglin Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M., Yu, H., Luo, J. et al. Tailoring Infrared Refractory Plasmonic Material to Broadband Circularly Polarized Thermal Emitter. Plasmonics 12, 649–654 (2017). https://doi.org/10.1007/s11468-016-0310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0310-6

Keywords

Navigation