Skip to main content
Log in

All-Optical Tunable Wavelength-Division Multiplexing Based on Colloidal Crystal Coated Silver Film

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

An all-optical tunable nanoscale wavelength-division multiplexing device is realized theoretically based on a plasmonic microstructure, which is composed of a silver film coated with a monolayer colloidal crystal made of cholesteryl iodide-doped polystyrene. The physical mechanism is attributed to the variation of surface plasmon polariton modes and guided modes caused by pump-laser-induced refractive index change of cholesteryl iodide. An up to 90-nm shift in the resonant wavelength of optical channels can be reached under excitation of a 500 mJ/cm2 pump laser. The number of optical channels can be tuned by adjusting the structure parameters of the monolayer colloidal crystal. This may open a new way for the study of integrated photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Takahashi H, Suzuki S, Nishi I (1994) Wavelength multiplexer based on SiO2-Ta2O5 arrayed-waveguide grating. J Lightwave Technol 12:989–995

    Article  Google Scholar 

  2. Hill K, Fujii Y, Johnson DC, Kawasaki BS (1987) Photo-sensitivity in optical fiber waveguide: application to reflection filter fabrication. Appl Phys Lett 32:647–649

    Article  Google Scholar 

  3. Sharkawy A, Shi S, Prather DW (2001) Multichannel wavelength division multiplexing with photonic crystals. Appl Opt 40:2247–2252

    Article  CAS  Google Scholar 

  4. Wu YD, Shih TT, Lee JJ (2009) High-quality-factor filter based on a photonic crystal ring resonator for wavelength division multiplexing applications. Appl Opt 48:F24–F30

    Article  Google Scholar 

  5. Hu XY, Zhang YB, Xu XA, Gong QH (2011) Nanoscale surface plasmon all-optical diode based on plasmonic slot waveguides. Plasmonics 6:619–624

    Article  Google Scholar 

  6. Anderson LJE, Payne CM, Zhen Y, Nordlander P, Hafner JH (2011) A tunable plasmon resonance in gold nanobelts. Nano Lett 11:5034–5037

    Article  CAS  Google Scholar 

  7. Farahani JN, Pohl DW, Eisler HJ, Hecht B (2005) Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. Phys Rev Lett 95:017402

    Article  CAS  Google Scholar 

  8. Politano A, Agostino RG, Colavita E, Formoso V, Chiarello G (2007) Electronic properties of self-assembled quantum dots of sodium on Cu(111) and their interaction with water. Surf Sci 601:2656–2659

    Article  CAS  Google Scholar 

  9. Link S, Elsayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  10. Politano A, Agostino RG, Colavita E, Formoso V, Chiarello G (2009) Collective excitations in nanoscale thin alkali films: Na/Cu(111). J Nanosci Nanotechnol 9:3932–3937

    Article  CAS  Google Scholar 

  11. Politano A, Formoso V, Chiarello G (2010) Plasmonic modes confined in nanoscale thin silver films deposited onto metallic substrates. J Nanosci Nanotechnol 10:1313–1321

    Article  CAS  Google Scholar 

  12. Dostalek J, Vaisocherova H, Homola J (2005) Multichannel surface plasmon resonance biosensor with wavelength division multiplexing. Sens Actuators B 108:758–764

    Article  Google Scholar 

  13. Gong Y, Liu X, Wang L (2010) High-channel-count plasmonic filter with the metal–insulator–metal Fibonacci-sequence gratings. Opt Lett 35:285–287

    Article  Google Scholar 

  14. Volkov VS, Bozhevolnyi SI, Devaux E, Laluet JY, Ebbesen TW (2007) Wavelength selective nanophotonic components utilizing channel plasmon polaritons. Nano Lett 7:880–884

    Article  CAS  Google Scholar 

  15. Li J, Hu XY, Gu Y, Gong QH (2010) Tunable wavelength-division multiplexing based on metallic nanoparticle arrays. Opt Lett 35:4051–4053

    Article  Google Scholar 

  16. Chamanzar M, Soltani M, Momeni B, Yegnanarayanan S, Adibi A (2010) Hybrid photonic surface-plasmon-polariton ring resonators for sensing applications. Appl Phys B 101:263–271

    Article  CAS  Google Scholar 

  17. Wong CL, Chen GCK, Ng BK, Agarwal S, Lin Z, Chen P, Ho HP (2011) Multiplex spectral surface plasmon resonance imaging (SPRI) sensor based on the polarization control scheme. Opt Express 19:18965–18978

    Article  CAS  Google Scholar 

  18. Shi L, Liu XH, Yin HW, Zi J (2010) Optical response of a flat metallic surface coated with a monolayer array of latex spheres. Phys Lett A 374:1059–1062

    Article  CAS  Google Scholar 

  19. Oskooi AF, Roundy D, Ibanescu M, Bermel P, Joannopoulos JD, Johnson SG (2010) MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method. Computer Phys Commun 181:687–702

    Article  CAS  Google Scholar 

  20. Palik ED (1985) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

  21. Fan SH, Joannopoulos JD (2002) Analysis of guided resonances in photonic crystal slabs. Phys Rev B 65:235112

    Article  Google Scholar 

  22. Hu XY, Xin C, Li ZQ, Gong QH (2010) Ultrahigh-contrast all-optical diodes based on tunable surface plasmon polaritons. New J Phys 12:023029

    Article  Google Scholar 

  23. Wu FQ, Han DZ, Hu XH, Liu XH, Zi J (2009) Complete surface plasmon-polariton band gap and gap-governed waveguiding, bending and splitting. J Phys Condens Matter 21:185010

    Article  Google Scholar 

  24. Sarrazin M, Vigneron JP (2004) Nonreciprocal optical reflection from a bidimensional array of subwavelength holes in a metallic film. Phys Rev B 70:193409

    Article  Google Scholar 

  25. Li X, Han DZ, Wu FQ, Xu C, Liu XH, Zi J (2008) Flat metallic surfaces coated with a dielectric grating: excitations of surface plasmon-polaritons and guided modes. J Phys Condens Matter 20:485001

    Article  Google Scholar 

  26. Peng LH, Hsu CC, Shih YC (2003) Second-harmonic green generation from two-dimensional nonlinear photonic crystal with orthorhombic lattice structure. Appl Phys Lett 83:3447–3449

    Article  CAS  Google Scholar 

  27. Sheng Y, Dou JH, Ma BQ, Cheng BY, Zhang DZ (2007) Broadband efficient second harmonic generation in media with a short-range order. Appl Phys Lett 91:011101

    Article  Google Scholar 

  28. Furumi S, Yokoyama S, Otomo A, Mashiko S (2004) Phototunable photonic bandgap in a chiral liquid crystal laser device. Appl Phys Lett 84:2491–2493

    Article  CAS  Google Scholar 

  29. Furumi S, Yokoyama S, Otomo A, Mashiko S (2006) Control of photonic bandgaps in chiral liquid crystals for distributed feedback effect. Thin Solid Films 499:322–328

    Article  CAS  Google Scholar 

  30. Ding CY, Hu XY, Jiang P, Gong QH (2008) Tunable surface plasmon polariton microcavity. Phys Lett A 372:4536–4538

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China under grant 2007CB307001, the National Natural Science Foundation of China under grants 61077027, 10874010, 11121091, and 90921008, and the program for New Century Excellent Talents in University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyong Hu or Qihuang Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Y., Hu, X., Lu, C. et al. All-Optical Tunable Wavelength-Division Multiplexing Based on Colloidal Crystal Coated Silver Film. Plasmonics 7, 589–594 (2012). https://doi.org/10.1007/s11468-012-9346-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-012-9346-4

Keywords

Navigation