Skip to main content
Log in

Lattice Boltzmann model for combustion and detonation

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In this paper we present a lattice Boltzmann model for combustion and detonation. In this model the fluid behavior is described by a finite-difference lattice Boltzmann model by Gan et al. [Physica A, 2008, 387: 1721]. The chemical reaction is described by the Lee-Tarver model [Phys. Fluids, 1980, 23: 2362]. The reaction heat is naturally coupled with the flow behavior. Due to the separation of time scales in the chemical and thermodynamic processes, a key technique for a successful simulation is to use the operator-splitting scheme. The new model is verified and validated by well-known benchmark tests. As a specific application of the new model, we studied the simple steady detonation phenomenon. To show the merit of LB model over the traditional ones, we focus on the reaction zone to study the non-equilibrium effects. It is interesting to find that, at the von Neumann peak, the system is nearly in its thermodynamic equilibrium. At the two sides of the von Neumann peak, the system deviates from its equilibrium in opposite directions. In the front of von Neumann peak, due to the strong compression from the reaction product behind the von Neumann peak, the system experiences a sudden deviation from thermodynamic equilibrium. Behind the von Neumann peak, the release of chemical energy results in thermal expansion of the matter within the reaction zone, which drives the system to deviate the thermodynamic equilibrium in the opposite direction. From the deviation from thermodynamic equilibrium, Δ m *, defined in this paper, one can understand more on the macroscopic effects of the system due to the deviation from its thermodynamic equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Succi, The Lattice Boltzmann Equation for Fluid Dynam ics and Beyond, New York: Oxford University Press, 2001

    Google Scholar 

  2. R. Benzi, S. Succi, and M. Vergassola, Phys. Rep., 1992, 222(3): 145

    Article  ADS  Google Scholar 

  3. A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E, 2003, 67(5): 056105

    Article  ADS  Google Scholar 

  4. A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E, 2006, 74(1): 011505

    Article  ADS  Google Scholar 

  5. A. Xu, G. Gonnella, and A. Lamura, Physica A, 2004, 331: 10

    Article  ADS  Google Scholar 

  6. A. Xu, G. Gonnella, and A. Lamura, Physica A, 2004, 334: 750

    Article  ADS  Google Scholar 

  7. A. Xu, G. Gonnella, and A. Lamura, Physica A, 2006, 362: 42

    Article  ADS  Google Scholar 

  8. C. Aidun and J. Clausen, Annu. Rev. Fluid Mech., 2010, 42(1): 439

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Chen, H. Chen, D. Martnez, and W. Matthaeus, Phys. Rev. Lett., 1991, 67(27): 3776

    Article  ADS  Google Scholar 

  10. G. Vahala, B. Keating, M. Soe, J. Yepezand, and L. Vahala, Commun. Comput. Phys., 2008, 4: 624

    Google Scholar 

  11. A. J. C. Ladd, J. Fluid Mech., 1994, 271: 285

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. A. J. C. Ladd, J. Fluid Mech., 1994, 271: 311

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Succi, E. Foti, and F. Higuera, Europhys. Lett., 1989, 10(5): 433

    Article  ADS  Google Scholar 

  14. Y. Xu, H. Li, S. Guo, and G. Huang, Commun. Theor. Phys., 2004, 41: 949

    MATH  Google Scholar 

  15. Y. Xu, Y. Liu, and G. Huang, Chin. Phys. Lett., 2004, 21: 2454

    Article  ADS  Google Scholar 

  16. Y. Xu, Y. Liu, X. Yang, and F. Wu, Commun. Theor. Phys., 2008, 49: 1319

    Article  ADS  Google Scholar 

  17. M. Watari and M. Tsutahara, Phys. Rev. E, 2003, 67(3): 036306

    Article  ADS  Google Scholar 

  18. A. Xu, Europhys. Lett., 2005, 69(2): 214

    Article  ADS  Google Scholar 

  19. A. Xu, Phys. Rev. E, 2005, 71(6): 066706

    Article  ADS  Google Scholar 

  20. Y. Gan, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2008, 50(2): 201

    Article  ADS  Google Scholar 

  21. Y. Gan, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2011, 56(3): 490

    Article  ADS  MATH  Google Scholar 

  22. Y. Gan, A. Xu, G. Zhang, and Y. Li, Phys. Rev. E, 2011, 83(5): 056704

    Article  ADS  Google Scholar 

  23. Q. Li, Y. L. He, Y. Wang, and W. Q. Tao, Phys. Rev. E, 2007, 76(5): 056705

    Article  MathSciNet  ADS  Google Scholar 

  24. Q. Li, Y. L. He, Y. Wang, and G. H. Tang, Phys. Lett. A, 2009, 373(25): 2101

    Article  ADS  MATH  Google Scholar 

  25. Y. Wang, Y. L. He, T. Zhao, G. H. Tang, and W. Q. Tao, Int. J. Mod. Phys. C, 2007, 18(12): 1961

    Article  MATH  Google Scholar 

  26. M. R. Swift, W. R. Osborn, and J. M. Yeomans, Phys. Rev. Lett., 1995, 75(5): 830

    Article  ADS  Google Scholar 

  27. X. He, S. Chen, and R. Zhang, J. Comput. Phys., 1999, 152(2): 642

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama, and F. Toschi, Phys. Rev. E, 2007, 75(2): 026702

    Article  MathSciNet  ADS  Google Scholar 

  29. V. Sofonea, A. Lamura, G. Gonnella, and A. Cristea, Phys. Rev. E, 2004, 70(4): 046702

    Article  ADS  Google Scholar 

  30. A. Cristea, G. Gonnella, A. Lamura, and V. Sofonea, Commun. Comput. Phys., 2010, 7: 350

    MathSciNet  Google Scholar 

  31. Y. Gan, A. Xu, G. Zhang, and Y. Li, Physica A, 2008, 387(8–9): 1721

    Article  ADS  Google Scholar 

  32. Y. Gan, A. Xu, G. Zhang, Y. Li, and H. Li, Phys. Rev. E, 2011, 84(4): 046715

    Article  ADS  Google Scholar 

  33. Y. Gan, A. Xu, G. Zhang, P. Zhang, and Y. Li, Europhys. Lett., 2012, 97(4): 44002

    Article  ADS  Google Scholar 

  34. Y. Gan, A. Xu, G. Zhang, and Y. Li, Front. Phys., 2012, 7(4): 481

    Article  Google Scholar 

  35. A. Xu, G. Zhang, Y. Gan, F. Chen, and X. Yu, Front. Phys., 2012, 7(5): 582

    Article  Google Scholar 

  36. X. F. Pan, A. Xu, G. Zhang, and S. Jiang, Int. J. Mod. Phys. C, 2007, 18(11): 1747

    Article  ADS  MATH  Google Scholar 

  37. F. Chen, A. Xu, G. Zhang, Y. Gan, T. Cheng, and Y. Li, Commun. Theor. Phys., 2009, 52: 681

    Article  ADS  MATH  Google Scholar 

  38. F. Chen, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2010, 54(6): 1121

    Article  ADS  MATH  Google Scholar 

  39. F. Chen, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2011, 55(2): 325

    Article  ADS  Google Scholar 

  40. A. N. Gorban and D. Packwood, Phys. Rev. E, 2012, 86(2): 025701 (R)

    Article  ADS  Google Scholar 

  41. F. J. Higuera, S. Succi, and R. Benzi, Europhys. Lett., 1989, 9(4): 345

    Article  ADS  Google Scholar 

  42. P. Lallemand and L. S. Luo, Phys. Rev. E, 2000, 61(6): 6546

    Article  MathSciNet  ADS  Google Scholar 

  43. P. Lallemand and L. S. Luo, Phys. Rev. E, 2003, 68(3): 036706

    Article  MathSciNet  ADS  Google Scholar 

  44. F. Chen, A. Xu, G. Zhang, and Y. Li, Phys. Lett. A, 2011, 375(21): 2129

    Article  ADS  Google Scholar 

  45. F. Chen, A. Xu, G. Zhang, Y. Li, and S. Succi, Europhys. Lett., 2010, 90(5): 54003

    Article  ADS  Google Scholar 

  46. F. Tosi, S. Ubertini, S. Succi, H. Chen, and I. V. Karlin, Math. Comput. Simul., 2006, 72(2–6): 227

    Article  MathSciNet  MATH  Google Scholar 

  47. S. Ansumali and I. V. Karlin, J. Stat. Phys., 2002, 107(1/2): 291

    Article  MATH  Google Scholar 

  48. S. S. Chikatamarla and I. V. Karlin, Phys. Rev. Lett., 2006, 97(19): 190601

    Article  MathSciNet  ADS  Google Scholar 

  49. S. S. Chikatamarla and I. V. Karlin, Phys. Rev. E, 2009, 79(4): 046701

    Article  MathSciNet  ADS  Google Scholar 

  50. Y. Li, R. Shock, R. Zhang, and H. Chen, J. Fluid Mech., 2004, 519: 273

    Article  ADS  MATH  Google Scholar 

  51. Y. Gan, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2011, 56(3): 490

    Article  ADS  MATH  Google Scholar 

  52. F. Chen, A. Xu, G. Zhang, and Y. Li, Commun. Theor. Phys., 2011, 56(2): 333

    Article  ADS  MATH  Google Scholar 

  53. W. Fickett and W. C. Davis, Detonation, Theory and Experiment, New York: Dover Publications, Inc. Mineola, 1979

    Google Scholar 

  54. M. Berthelot, P. Vielle, and C. R. Hebd, Sceances Acad. Sci., 1881, 93: 18

    Google Scholar 

  55. M. Berthelot, P. Vielle, and C. R. Hebd, Sceances Acad. Sci., 1882, 94: 149

    Google Scholar 

  56. E. Mallard, H. Le Chatelier, and C. R. Hebd, Sceances Acad. Sci., 1881, 93: 145

    Google Scholar 

  57. D. L. Chapmann, Philos. Mag., 1899, 47: 90

    MATH  Google Scholar 

  58. E. Jouguet, J. Math. Pures Appl., 1905, 1: 347

    Google Scholar 

  59. Ya. B. Zeldovich and S. A. Kompaneets, Zh. Eksp. Teor. Fiz., 1940, 10: 542

    Google Scholar 

  60. J. Von Neumann, Theory of Detonation Waves, New York: Macmillan, 1942

    Google Scholar 

  61. W. Doering, Ann. Phys., 1943, 43: 421

    Article  Google Scholar 

  62. C. L. Mader, Numerical Modeling of Explosives and Propellants, New York: CRC Press, 2008

    Google Scholar 

  63. C. Wang, X. Zhang, C. W. Shu, and J. Ning, J. Comput. Phys., 2012, 231(2): 653

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. S. Tan, C. Wang, C. W. Shu, and J. Ning, J. Comput. Phys., 2012, 231(6): 2510

    Article  MathSciNet  ADS  MATH  Google Scholar 

  65. S. Karni, J. Comput. Phys., 1994, 112(1): 31

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. A. Marquina and P. Mulet, J. Comput. Phys., 2003, 185(1): 120

    Article  MathSciNet  ADS  MATH  Google Scholar 

  67. J. J. Quirk and S. Karni, J. Fluid Mech., 1996, 318: 129

    Article  ADS  MATH  Google Scholar 

  68. K. M. Shyue, J. Comput. Phys., 1998, 142(1): 208

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. R. Loubre, P. H. Maire, M. Shashkov, J. Breil, and S. Galera, J. Comput. Phys., 2010, 229: 4724

    Article  MathSciNet  ADS  Google Scholar 

  70. S. Galera, P. H. Maire, and J. Breil, J. Comput. Phys., 2010, 229(16): 5755

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. S. Ssher and R. P. Fedkiw, J. Comput. Phys., 2001, 169: 463

    Article  MathSciNet  ADS  Google Scholar 

  72. M. Sussman, P. Smereka, and S. Osher, J. Comput. Phys., 1994, 114(1): 146

    Article  ADS  MATH  Google Scholar 

  73. R. Scardovelli and S. Zaleski, Annu. Rev. Fluid Mech., 1999, 31(1): 567

    Article  MathSciNet  ADS  Google Scholar 

  74. G. Tryggvason, B. Bunner, A. Esmaeeli, and D. Juric, J. Comput. Phys., 2001, 169: 708

    Article  ADS  MATH  Google Scholar 

  75. J. Glimm, J. W. Grove, X. L. Li, and D. C. Tan, SIAM J. Sci. Comput., 2000, 21(6): 2240

    Article  MathSciNet  MATH  Google Scholar 

  76. D. K. Mao, J. Comput. Phys., 2007, 226(2): 1550

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. J. Sun and J. Zhu, Theory of Detonation Physics, Beijing: National Defense Industry Press, 1995 (in Chinese)

    Google Scholar 

  78. S. Succi, G. Bella, and F. Papetti, J. Sci. Comput., 1997, 12(4): 395

    Article  MATH  Google Scholar 

  79. O. Filippova and D. Hanel, J. Comput. Phys., 2000, 158(2): 139

    Article  MathSciNet  ADS  MATH  Google Scholar 

  80. O. Filippova and D. Hanel, Comput. Phys. Commun., 2000, 129(1–3): 267

    Article  MathSciNet  ADS  MATH  Google Scholar 

  81. K. Yamamoto, X. He, and G. D. Doolen, J. Stat. Phys., 2002, 107(1/2): 367

    Article  MATH  Google Scholar 

  82. T. Lee, C. L. Lin, and L. D. Chen, J. Comput. Phys., 2006, 215(1): 133

    Article  ADS  MATH  Google Scholar 

  83. E. L. Lee and C. M. Tarver, Phys. Fluids, 1980, 23(12): 2362

    Article  ADS  Google Scholar 

  84. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, New York: Interscienc Publishers Inc., 1948

    MATH  Google Scholar 

  85. W. W. Wood, Phys. Fluids, 1963, 6(8): 1081

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Guo Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, B., Xu, AG., Zhang, GC. et al. Lattice Boltzmann model for combustion and detonation. Front. Phys. 8, 94–110 (2013). https://doi.org/10.1007/s11467-013-0286-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0286-z

Keywords

Navigation