Skip to main content
Log in

Demonstration of eight-partite two-diamond shape cluster state for continuous variables

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Multipartite entangled state is the basic resource for implementing quantum information networks and quantum computation. In this paper, we present the experimental demonstration of the eight-partite two-diamond shape cluster states for continuous variables, which consist of eight spatially separated and entangled optical modes. Eight resource squeezed states of light with classical coherence are produced by four nondegenerate optical parametric amplifiers and then they are transformed to the eight-partite two-diamond shape cluster states by a specially designed linear optical network. Since the spatially separated multipartite entangled state can be prepared off-line, it can be conveniently applied in the future quantum technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  2. S. L. Braunstein and P. van Loock, Rev. Mod. Phys., 2005, 77(2): 513

    Article  ADS  MATH  Google Scholar 

  3. R. Raussendorf and H. J. Briegel, Phys. Rev. Lett., 2001, 86(22): 5188

    Article  ADS  Google Scholar 

  4. N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, Phys. Rev. Lett., 2006, 97(11): 110501

    Article  ADS  Google Scholar 

  5. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature, 2005, 434(7030): 169

    Article  ADS  Google Scholar 

  6. K. Chen, C. M. Li, Q. Zhang, Y. A. Chen, A. Goebel, S. Chen, A. Mair, and J.W. Pan, Phys. Rev. Lett., 2007, 99(12): 120503

    Article  ADS  Google Scholar 

  7. W. Gao, P. Xu, X. Yao, O. Gühne, A. Cabello, C. Y. Lu, C. Z. Peng, Z. B. Chen, and J. W. Pan, Phys. Rev. Lett., 2010, 104(2): 020501

    Article  ADS  Google Scholar 

  8. P. van Loock, J. Opt. Soc. Am. B, 2007, 24: 340

    Article  ADS  Google Scholar 

  9. A. Tan, C. Xie, and K. Peng, Phys. Rev. A, 2009, 79(4): 042338

    Article  ADS  Google Scholar 

  10. M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, Phys. Rev. A, 2009, 79(6): 062318

    Article  ADS  Google Scholar 

  11. Y. Miwa, J. I. Yoshikawa, P. van Loock, and A. Furusawa, Phys. Rev. A, 2009, 80(5): 050303 (R)

    Article  ADS  Google Scholar 

  12. Y. Wang, X. Su, H. Shen, A. Tan, C. Xie, and K. Peng, Phys. Rev. A, 2010, 81(2): 022311

    Article  ADS  Google Scholar 

  13. R. Ukai, N. Iwata, Y. Shimokawa, S. C. Armstrong, A. Politi, J. Yoshikawa, P. van Loock, and A. Furusawa, Phys. Rev. Lett., 2011, 106(24): 240504

    Article  ADS  Google Scholar 

  14. R. Ukai, S. Yokoyama, J. I. Yoshikawa, P. van Loock, and A. Furusawa, Phys. Rev. Lett., 2011, 107(25): 250501

    Article  ADS  Google Scholar 

  15. X. Su, A. Tan, X. Jia, J. Zhang, C. Xie, and K. Peng, Phys. Rev. Lett., 2007, 98(7): 070502

    Article  ADS  Google Scholar 

  16. M. Yukawa, R. Ukai, P. van Loock, and A. Furusawa, Phys. Rev. A, 2008, 78(1): 012301

    Article  ADS  Google Scholar 

  17. A. Tan, Y. Wang, X. Jin, X. Su, X. Jia, J. Zhang, C. Xie, and K. Peng, Phys. Rev. A, 2008, 78(1): 013828

    Article  ADS  Google Scholar 

  18. M. Pysher, Y. Miwa, R. Shahrokhshahi, R. Bloomer, and O. Pfister, Phys. Rev. Lett., 2011, 107(3): 030505

    Article  ADS  Google Scholar 

  19. X. Su, Y. Zhao, S. Hao, X. Jia, C. Xie, and K. Peng, Opt. Lett., 2012, 37(24): 5178

    Article  ADS  Google Scholar 

  20. P. van Loock and A. Furusawa, Phys. Rev. A, 2003, 67(5): 052315

    Article  ADS  Google Scholar 

  21. J. Zhang and S. L. Braunstein, Phys. Rev. A, 2006, 73(3): 032318

    Article  ADS  Google Scholar 

  22. P. van Loock, C. Weedbrook, and M. Gu, Phys. Rev. A, 2007, 76(3): 032321

    Article  ADS  Google Scholar 

  23. N. C. Menicucci, S. T. Flammia, and P. van Loock, Phys. Rev. A, 2011, 83(4): 042335

    Article  ADS  Google Scholar 

  24. Y. Wang, Y. Zheng, C. Xie, and K. Peng, IEEE J. Quantum Electron., 2011, 47(7): 1006

    Article  ADS  Google Scholar 

  25. X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, and K. Peng, Phys. Rev. Lett., 2002, 88(4): 047904

    Article  ADS  Google Scholar 

  26. Y. Wang, H. Shen, X. Jin, X. Su, C. Xie, and K. Peng, Opt. Express, 2010, 18(6): 6149

    Article  ADS  Google Scholar 

  27. Y. Zhang, H. Wang, X. Li, J. Jing, C. Xie, and K. Peng, Phys. Rev. A, 2000, 62(2): 023813

    Article  ADS  Google Scholar 

  28. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel, Phys. Rev. Lett., 2010, 104(25): 251102

    Article  ADS  Google Scholar 

  29. Z. Yan, X. Jia, X. Su, Z. Duan, C. Xie, and K. Peng, Phys. Rev. A, 2012, 85(4): 040305 (R)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-De Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, XL., Hao, SH., Zhao, YP. et al. Demonstration of eight-partite two-diamond shape cluster state for continuous variables. Front. Phys. 8, 20–26 (2013). https://doi.org/10.1007/s11467-013-0284-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0284-1

Keywords

Navigation