Skip to main content
Log in

Embedded discontinuity finite element modeling of fluid flow in fractured porous media

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

In many geomaterials, particularly rocks and clays, permeability is greatly enhanced by the presence of fractures. Fracture sets create an overall permeability that is anisotropic, enhanced in the directions of the fractures. In modeling the fractures via a finite element method, for example, meshing around these fractures can become quite difficult and result in computationally intensive systems. In this article, we develop a relatively simple method for including the fractures within the elements. Flow through the bulk medium is assumed to be governed by Darcy’s law, and the flow on the fracture by a generalization of the law. This model is embedded in a finite element framework, with the fractures passing through the elements. In this formulation, elements with fractures are given an enhanced permeability in the direction of the fractures. With these enhancements, the material essentially becomes anisotropically more permeable in the direction of fracture sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Antonellini M, Aydin A (1994) Effect of faulting on fluid-flow in porous sandstones—petrophysical properties. AAPG Bull-Am Assoc Pet Geol 78(3):355–377

    Google Scholar 

  2. Barenblatt G, Zheltov Y, Kochina I (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks. J Appl Mech Math 24(5):1286–1303

    Article  MATH  Google Scholar 

  3. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5): 601–620. doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S

    Article  Google Scholar 

  4. Borja RI, Koliji A (2009) On the effective stress in unsaturated porous continua with double porosity. J Mech Phys Solids 57(8):1182–1193. doi:10.1016/j.jmps.2009.04.014

    Article  MATH  Google Scholar 

  5. Callari C, Armero F, Abati A (2010) Strong discontinuities in partially saturated poroplastic solids. Comput Methods Appl Mech Eng 199(23–24):1513–1535. doi:10.1016/j.cma.2010.01.002

    Article  MathSciNet  MATH  Google Scholar 

  6. Foster C, Mohammad Nejad T (2011) Numerical modeling of poromechanics in continuous and localized regions. In: Borja RI (ed) Multiscale and multiphysics processes in geomechanics, results of the workshop on multiscale and multiphysics processes in geomechanics. Stanford, June 23–25, 2010, vol., 141–144. Springer, Berlin

  7. Foster CD, Borja RI, Regueiro RA (2007) Embedded strong discontinuity finite elements for fractured geomaterials with variable friction. Int J Numer Methods Eng 72(5):549–581. doi:10.1002/nme.2020

    Article  MathSciNet  MATH  Google Scholar 

  8. Masud A (2007) A stabilized mixed finite element method for Darcy-Stokes flow. Int J Numer Methods Fluids 54(6–8):665–681. doi:10.1002/fld.1508 MiniSymposium on Stabilized, Multiscale and Multiphysics Methods, Los Angeles, CA, Jul 16–22, 2006

    Google Scholar 

  9. Murad M, Thomee V, Loula A (1996) Asymptotic behavior of semidiscrete finite-element approximations of Biot’s consolidation problem. SIAM J Numer Anal 33(3):1065–1083. doi:10.1137/0733052

    Article  MathSciNet  MATH  Google Scholar 

  10. Noetinger B, Jarrige N (2012) A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks. J Comput Phys 231(1):23–38. doi:10.1016/j.jcp.2011.08.015

    Article  MathSciNet  MATH  Google Scholar 

  11. Oliver J, Huespe AE, Samaniego E, Chaves EWV (2004) Continuum approach to the numerical simulation of material failure in concrete. Int J Numer Anal Methods Geomech 28(7-8):609–632

    Article  MATH  Google Scholar 

  12. Rethore J, de Borst R, Abellan MA (2007) A two-scale approach for fluid flow in fractured porous media. Int J Numer Methods Eng 71(7):780–800. doi:10.1002/nme.1962

    Article  MATH  Google Scholar 

  13. Rice JR (2006) Heating and weakening of faults during earthquake slip. J Geophys Res-Solid Earth 111(B5). doi:10.1029/2005JB004006

  14. Simo JC, Oliver J, Armero F (1993) An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Comput Mech 12: 277–296

    Article  MathSciNet  Google Scholar 

  15. Sun W, Andrade JE, Rudnicki JW, Eichhubl P (2011) Connecting microstructural attributes and permeability from 3D tomographic images of in situ shear-enhanced compaction bands using multiscale computations. Geophys Res Lett 38. doi:10.1029/2011GL047683

  16. Tao Q, Ghassemi A, Ehlig-Economides CA (2011) A fully coupled method to model fracture permeability change in naturally fractured reservoirs. Int J Rock Mech Min Sci 48(2):259–268. doi:10.1016/j.ijrmms.2010.11.012

    Article  Google Scholar 

  17. Therrien R, Sudicky E (1996) Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media. J Contam Hydrol 23(1–2):1–44. doi:10.1016/0169-7722(95)00088-7

    Article  Google Scholar 

  18. White JA, Borja RI (2008) Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients. Comput Methods Appl Mech Eng 197(49–50):4353–4366. doi:10.1016/j.cma.2008.05.015

    Article  MATH  Google Scholar 

  19. Yu-jun Z, Chao-shuai Y (2011) Coupled thermo-hydro-mechanical-migratory model for dual-porosity medium and numerical analysis. J Central South Univ Technol 18(4):1256–1262. doi:1.1007/s11771-011-0830-3

    Article  Google Scholar 

Download references

Acknowledgments

The first author acknowledge the support of the US National Science Foundation, Grant No. CMMI-1030398. Both authors would like to thank two anonymous reviewers for their comments, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig D. Foster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, C.D., Mohammad Nejad, T. Embedded discontinuity finite element modeling of fluid flow in fractured porous media. Acta Geotech. 8, 49–57 (2013). https://doi.org/10.1007/s11440-012-0180-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-012-0180-9

Keywords

Navigation