Skip to main content
Log in

On the mathematically reliable long-term simulation of chaotic solutions of Lorenz equation in the interval [0,10000]

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

Using 1200 CPUs of the National Supercomputer TH-A1 and a parallel integral algorithm based on the 3500th-order Taylor expansion and the 4180-digit multiple precision data, we have done a reliable simulation of chaotic solution of Lorenz equation in a rather long interval 0 ⩽ t ⩽ 10000 LTU (Lorenz time unit). Such a kind of mathematically reliable chaotic simulation has never been reported. It provides us a numerical benchmark for mathematically reliable long-term prediction of chaos. Besides, it also proposes a safe method for mathematically reliable simulations of chaos in a finite but long enough interval. In addition, our very fine simulations suggest that such a kind of mathematically reliable long-term prediction of chaotic solution might have no physical meanings, because the inherent physical micro-level uncertainty due to thermal fluctuation might quickly transfer into macroscopic uncertainty so that trajectories for a long enough time would be essentially uncertain in physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorenz E N. Deterministic non-periodic flow. J Atmos Sci, 1963, 20: 130–141

    Article  ADS  Google Scholar 

  2. Lorenz E N. Computational chaos-a prelude to computational instability. Phys D, 1989, 15: 299–317

    Article  MathSciNet  Google Scholar 

  3. Lorenz E N. Computational periodicity as observed in a simple system. Tellus-A, 2006, 58: 549–559

    Article  ADS  Google Scholar 

  4. Egolf D A, Melnikov V, Pesch W, et al. Mechanisms of extensive spatiotemporal chaos in Rayleigh-B`enard convection. Nature, 2000, 404: 733–735

    Article  ADS  Google Scholar 

  5. Gaspard P, Briggs M E, Francis M K, et al. Experimental evidence for microscopic chaos. Nature, 1998, 394: 865–868

    Article  ADS  Google Scholar 

  6. Anosov D V. Geodesic flows on closed Riemannian manifolds with negative curvature. Proc Steklov Inst Math, 1967, 90: 1

    Google Scholar 

  7. Dawson S, Grebogi C, Sauer T, et al. Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys Rev Lett, 1994, 73: 1927–1930

    Article  ADS  Google Scholar 

  8. Sauer T, Grebogi C, Yorke J A. How long do numerical chaotic solutions remain valid? Phys Rev Lett, 1997, 79: 59–62

    Article  ADS  Google Scholar 

  9. Sauer T. Shadowing breakdown and large errors in dynamical simulations of physical systems. Phys Rev E, 2002, 65: 036220

    Article  ADS  MathSciNet  Google Scholar 

  10. Yuan G, Yorke J A. Collapsing of chaos in one dimensional maps. Phys D, 2000, 136: 18

    Article  MATH  MathSciNet  Google Scholar 

  11. Shi P L. A relation on round-off error, attractor size and its dynamics in driven or coupled logistic map system. Chaos, 2008, 18: 013122

    Article  ADS  Google Scholar 

  12. Li J P, Zeng Q G, Chou J F. Computational uncertainty principle in nonlinear ordinary differential equations (I): Numerical results. Sci China Ser E-Tech Sci, 2000, 43: 449–460

    MATH  MathSciNet  Google Scholar 

  13. Li J P, Zeng Q G, Chou J F. Computational uncertainty principle in nonlinear ordinary differential equations (II): Theretical analysis. Sci China Ser E-Tech Sci, 2001, 44: 55–74

    Article  MATH  MathSciNet  Google Scholar 

  14. Teixeira J, Reynolds C A, Judd K. Time step sensitivity of nonlinear atmospheric models: Numerical convergence, truncation error growth, and ensemble design. J Atmos Sci, 2007, 64: 175–188

    Article  ADS  Google Scholar 

  15. Liao, S J. On the reliability of computed chaotic solutions of non-linear differential equations. Tellus-A, 2009, 61: 550–564

    Article  ADS  Google Scholar 

  16. Wang P F, Li J P, Li Q. Computational uncertainty and the application of a high-performance multiple precision scheme to obtaining the correct reference solution of Lorenz equations. Numer Algorithms, 2012, 59: 147–159

    Article  MATH  MathSciNet  Google Scholar 

  17. Corliss G F, Chang Y F. Solving ordinary differential equations using Taylor series. ACM Trans Math Software, 1982, 8: 114–144

    Article  MATH  MathSciNet  Google Scholar 

  18. Barrio R, Blesa F, Lara M. VSVO formulation of the Taylor method for the numerical solution of ODEs. Comput Math Appl, 2005, 50: 93–111

    Article  MATH  MathSciNet  Google Scholar 

  19. Liao S J. On the numerical simulation of propagation of micro-level inherent uncertainty for chaotic dynamic systems. Chaos Soliton Fractal, 2013, 47: 1–12

    Article  ADS  Google Scholar 

  20. Saltzman B. Finite amplitude free convection as an initial value problem (I). J Atmos Sci, 1962, 19: 329–341

    Article  ADS  Google Scholar 

  21. Khinchin A I. Mathematical Foundations of Statistical Mechanics. Dover Publications, 1949

    Google Scholar 

  22. Landau L D, Lifshitz EM. Statistical Physics. 3rd ed. Pergamon Press, 1985

    Google Scholar 

  23. Gorodetsky M L, Grudinin I S. Fundamental thermal fluctuations in microspheres. J Opt Soc Am B, 2004, 21: 697–705

    Article  ADS  Google Scholar 

  24. Liao S J. Chaos: A bridge from microscopic uncertainty to macroscopic randomness. Commun Nonlinear Sci Numer Simulat, 2012, 17: 2564–2569

    Article  ADS  Google Scholar 

  25. Liao S J. Physical limit of prediction for chaotic motion of three-body problem. Commun Nonlinear Sci Numer Simulat, 2014, 19: 601–616

    Article  ADS  Google Scholar 

  26. Bai Y L, Ke F J, Xia M F. Deterministically stochastic behavior and sensitivity to initial configuration in damage fracture. Sci Bull, 1994, 39: 892–895

    Google Scholar 

  27. Xia M F, Ke F J, Wei Y J, et al. Evolution induced catastrophe in a nonlinear dynamical model of material failure. Nonlinear Dyn, 2000, 22: 205–224

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShiJun Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, S., Wang, P. On the mathematically reliable long-term simulation of chaotic solutions of Lorenz equation in the interval [0,10000]. Sci. China Phys. Mech. Astron. 57, 330–335 (2014). https://doi.org/10.1007/s11433-013-5375-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5375-z

Keywords

Navigation