Skip to main content
Log in

An analytical study on nonequilibrium dissociating gas flow behind a strong bow shockwave under rarefied conditions

  • Article
  • Progress of Projects Supported by NSFC
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

In this paper, an explicitly analytical shock mapping relation is approximately deduced based on the theoretical modeling of the chemical nonequilibrium stagnation flow towards a slightly blunted nose. Based on the relation, the complex reacting stagnation flow problem can be discussed under the framework of the simplest normal shockwave flow. Therefore, a quantitatively meaningful criterion for dissociation nonequilibrium flow, that is a specific Damköhler number Da d , is naturally introduced as the ratio of the mapping length of the stagnation streamline and the characteristic nonequilibrium scale. Da d is found to be dependent on the flow’s rarefaction criterion Wr, that is a specific Knudsen number. Then, based on Da d , a normalized analytical formulation is obtained to quantitatively predict the actual degrees of dissociation at the outer edge of the stagnation point boundary layer (SPBL). At last, the direct simulation Monte Carlo (DSMC) method is employed to validate the analytical results, and the related flow mechanism is discussed. The present study not only shows nonequilibrium features of the flow problem, but also provides an indispensable basis for the following study on the nonequilibrium SPBL heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fay J A, Riddell F R. Theory of stagnation point heat transfer in dissociated air. J Aeronaut Sci, 1958, 25(2): 73–85

    MathSciNet  Google Scholar 

  2. Lighthill M J. Dynamics of a dissociating gas Part 1. Equilibrium flow. J Fluid Mech, 1957, 2(1): 1–32

    Article  ADS  MathSciNet  Google Scholar 

  3. Lighthill M J. Dynamics of a dissociating gas Part 2. Quasi-equilibrium transfer theory. J Fluid Mech, 1960, 8(2): 161–182

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Freeman N C. Non-equilibrium flow of an ideal dissociating gas. J Fluid Mech, 1958, 4(4): 407–425

    Article  ADS  MathSciNet  Google Scholar 

  5. Conti R, Van Dyke M. Inviscid reacting flow near a stagnation point. J Fluid Mech, 1969, 35(4): 799–813

    Article  ADS  MATH  Google Scholar 

  6. Hornung H G. Non-equilibrium dissociating nitrogen flow over spheres and circular cylinders. J Fluid Mech, 1972, 53(1): 149–176

    Article  ADS  MATH  Google Scholar 

  7. Candler G V. Comparison of CFD and theoretical post-shock gradients in hypersonic flow. Prog Aerosp Sci, 2010, 46: 81–88

    Article  Google Scholar 

  8. Inger G R. Nonequilibrium stagnation point boundary layers with arbitrary surface catalycity. AIAA J, 1963, 1(8): 1776–1784

    Article  MATH  Google Scholar 

  9. Inger G R. Nonequilibrium dissociated boundary layers with a reacting inviscid Flow. AIAA J, 1963, 1(9): 2057–5061

    Article  MATH  Google Scholar 

  10. Rosner D E. Scale effects and correlations in nonequilibrium convective heat transfer. AIAA J, 1963, 1(7): 1550–1555

    Article  Google Scholar 

  11. Anderson J D. Hypersonic and High Temperature Gas Dynamics, 2nd ed. Reston: AIAA Press, 2006

    Book  Google Scholar 

  12. Chung P M. Hypersonic Viscous Shock Layer of Nonequilibrium Dissociating Gas. NASA Technical Report, No. R-109, 1961

    Google Scholar 

  13. Gupta R N, Simmonds A L. Hypersonic low-density solutions of the Navier-Stokes equations with chemical nonequilibrium and multicomponent surface slip. AIAA Paper, 1986, AIAA-1986-1349

    Google Scholar 

  14. Lee C H, Park S O. Aerothermal performance constraints for small radius nosetip at high altitude. AIAA Paper, 2001, AIAA-2001-1823

    Google Scholar 

  15. Holman T D, Boyd I D. Effects of continuum breakdown on hypersonic aerothermodynamics for reacting flow. Phys Fluids, 2011, 23: 027101

    Article  ADS  Google Scholar 

  16. Gallis M A, Harvey J K. Modelling of chemical reactions in hypersonic rarefied flow with the direct simulation Monte Carlo method. J Fluid Mech, 1996, 312: 149–172

    Article  ADS  MATH  Google Scholar 

  17. Sarma G S R. Physico-chemical modelling in hypersonic flow simulation. Prog Aerosp Sci, 2000, 36: 281–349

    Article  Google Scholar 

  18. Candler G V, Olejniczak J, Harrold B. Detailed simulation of nitrogen dissociation in stagnation regions. Phys Fluids, 1997, 9(7): 2108–2117

    Article  ADS  Google Scholar 

  19. Lutz S A. Heating correlations for bluff cylinder hypersonic rarefied flows. AIAA Paper, 2003, AIAA-2003-4060

  20. Lips T, Fritsche B. A comparison of commonly used re-entry analysis tools. Acta Astronaut, 2005, 57: 312–323

    Article  ADS  Google Scholar 

  21. Wang Z H, Bao L, Tong B G. Variation character of stagnation point heat flux for hypersonic pointed bodies from continuum to rarefied flow states and its bridge function study. Sci China Ser G-Phys Mech Astron, 2009, 52(12): 2007–2015

    Article  ADS  Google Scholar 

  22. Wang Z H, Bao L, Tong B G. Rarefaction criterion and non-Fourier heat transfer in hypersonic rarefied flows. Phys Fluids, 2010, 22: 126103

    Article  ADS  Google Scholar 

  23. Wang Z H, Bao L, Tong B G. Theoretical modeling of the chemical non-equilibrium flow behind a normal shock wave. AIAA J, 2012, 50(2): 494–499

    Article  ADS  MATH  Google Scholar 

  24. Lees L. Laminar heat transfer over blunt-nosed bodies at hypersonic flight speed. Jet Propul, 1956, 26(4): 259–269

    Google Scholar 

  25. Stalker R J. Hypervelocity aerodynamics with chemical nonequilibrium. Ann Rev Fluid Mech, 1989, 21: 37–60

    Article  ADS  Google Scholar 

  26. Bird G A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford: Oxford University Press, 1994

    Google Scholar 

  27. Belouaggadia N, Olivier H, Brun R. Numerical and theoretical study of the shock stand-off distance in non-equilibrium flows. J Fluid Mech, 2008, 607: 167–197

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Inger G R. Non-equilibrium hypersonic stagnation flow with arbitrary surface catalycity including low Reynolds number effects. Int J Heat Mass Tran, 1966, 9(8): 755–772

    Article  Google Scholar 

  29. Inger G R. Nonequilibrium boundary-layer effects on the aerodynamic heating of hypersonic waverider vehicles. J Thermophys Heat Tr, 1995, 9(4): 595–604

    Article  Google Scholar 

  30. Blottner F G. Viscous shock layer at the stagnation point with non-equilibrium air chemistry. AIAA J, 1969, 7(12): 2281–2288

    Article  ADS  Google Scholar 

  31. Gokcen T. Effects of freestream nonequilibrium on convective heat transfer to a blunt body. J Thermophys Heat Tr, 1996, 10(2): 234–241

    Article  Google Scholar 

  32. Gokcen T. Effects of flowfield nonequilibrium on convective heat transfer to a blunt body. J Thermophys Heat Tr, 1997, 11(2): 289–295

    Article  Google Scholar 

  33. Vinokur M. On stagnation-point conditions in non-equilibrium inviscid blunt-body flows. J Fluid Mech, 1970, 43(1): 49–75

    Article  ADS  MATH  Google Scholar 

  34. Vallerani E. An ‘ideal equivalent gas method’ for the study of shock waves in supersonic real gas flows. Meccanica, 1969, 4(3): 234–249

    Article  MATH  Google Scholar 

  35. Birkhoff G. Hydrodynamics: a Study in Logic, Fact and Similitude. 2nd ed. Princeton: Princeton University Press, 1960

    MATH  Google Scholar 

  36. Zhang H X. The similarity law for real gas flow. Acta Aerodyn Sin, 1990, 8(1): 1–8

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BingGang Tong.

Additional information

Contributed by TONG BingGang (CAS Academician)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Bao, L. & Tong, B. An analytical study on nonequilibrium dissociating gas flow behind a strong bow shockwave under rarefied conditions. Sci. China Phys. Mech. Astron. 56, 671–679 (2013). https://doi.org/10.1007/s11433-013-5049-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5049-x

Keywords

Navigation