Skip to main content
Log in

General compliance transformation relations for all seven crystal systems

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

For crystals, the compliance (s ij ) and the stiffness (c ij ) matrices are specified in the orthogonal coordinate systems (Y i ), which do not coincide with the crystal axes (X i ) commonly used except for cubic and orthorhombic crystal systems. Transformations have been done in this paper and the general compliance transformation relations from the orthogonal coordinate systems (Y i ) to the measurement systems (M i ) are given for all seven crystal systems. Accordingly, useful expressions for Young’s modulus E and Poisson’s ratio υ are also derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang J M, Zhang Y, Xu K W. Anisotropy analysis of the thermal stresses and strain energies in BCC metal films. Physica B, 2005, 368: 215–222

    Article  ADS  Google Scholar 

  2. Zhang J M, Zhang Y, Xu K W. Dependence of stresses and strain energies on grain orientations in FCC metal films. J Cryst Growth, 2005, 285: 427–435

    Article  ADS  Google Scholar 

  3. Zhang J M, Zhang Y, Xu K W, et al. Dependence of the strain energies on grain orientations in HCP metal films. Appl Surf Sci, 2006, 253: 2432–2436

    Article  ADS  Google Scholar 

  4. Zhang J M, Zhang Y, Xu K W, et al. Dependence of the stresses on grain orientations in hexagonal films. Physica B, 2007, 388: 261–265

    Article  ADS  Google Scholar 

  5. Zhang Y, Zhang J M, Ji V. Anisotropy analysis of stresses and strain energies in diamond-cubic films. Physica B, 2007, 389: 372–376

    Article  ADS  Google Scholar 

  6. Zhang J M, Zhang Y, Xu K W, et al. Anisotropic elasticity in textured cubic film plane. Physica B, 2008, 403: 3379–3383

    Article  ADS  Google Scholar 

  7. Ohmi T, Saito T, Otsuki M, et al. Formation of copper thin films by a low kinetic energy particle process. J Electrochem Soc, 1991, 138: 1089–1097

    Article  Google Scholar 

  8. Huang H H, Chang H P, Chien Y T, et al. Influence of annealing temperature on the grain growth of samarium-doped ceria. J Cryst Growth, 2006, 287: 458–462

    Article  ADS  Google Scholar 

  9. Chen K N, Fan A, Tan C S, et al. Microstructure evolution and abnormal grain growth during copper wafer bonding. Appl Phys Lett, 2002, 81: 3774–3776

    Article  ADS  Google Scholar 

  10. Zhang J M, Xu K W, Ji V. Strain-energy-driven abnormal grain growth in copper films on silicon substrates. J Cryst Growth, 2001, 226: 168–174

    Article  ADS  Google Scholar 

  11. Zhang J M, Xu K W, Ji V. Competition between surface and strain energy during grain growth in free-standing and attached Ag and Cu films on Si substrates. Appl Surf Sci, 2002, 187: 60–67

    Article  ADS  Google Scholar 

  12. Kočka J, Mates T, Stuchlíková H, et al. Characterization of grain growth, nature and role of grain boundaries in microcrystalline silicon-review of typical features. Thin Solid Films, 2006, 501: 107–112

    Article  ADS  Google Scholar 

  13. Brini R, Schmerber G, Kanzari M, et al. Study of the growth of CuAlS2 thin films on oriented silicon (111). Thin Solid Films, 2009, 517: 2191–2194

    Article  ADS  Google Scholar 

  14. Sasajima Y, Kageyama J, Khoo K, et al. Grain coarsening mechanism of Cu thin films by rapid annealing. Thin Solid Films, 2010, 518: 6883–6890

    Article  ADS  Google Scholar 

  15. Dölle H. The influence of multiaxial stress states, stress gradients and elastic anisotropy on the evaluation of (residual) stresses by X-rays. J Appl Crystallogr, 1979, 12: 489–501

    Article  Google Scholar 

  16. Murarka S P. Multilevel interconnections for ULSI and GSI. Mater Sci Eng R-Rep, 1997, 19: 87–151

    Article  Google Scholar 

  17. Nye J F. Physical Properties of Crystals. Oxford: Clarendon Press, 1985. 131–149

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Ji, V. General compliance transformation relations for all seven crystal systems. Sci. China Phys. Mech. Astron. 56, 694–700 (2013). https://doi.org/10.1007/s11433-013-5025-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-013-5025-5

Keywords

Navigation