Skip to main content
Log in

Fragmented condensates of singly trapped dipolar Bose gases

  • Article
  • Progress of Projects Supported by NSFC
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

By employing the method of the multiconfigurational time-dependent Hartree for bosons, we investigate the ground state properties of a singly trapped dipolar gas of spinless bosons. We show that the repulsive interactions favor the formation of the fragmented ground state. In particular, we find the formation of the fragmented state is mainly due to the interaction energies associated with the one- and two-particle exchanges between orbitals. We also obtain the stability diagram of the system and find that the stability of the system is significantly enhanced by the appearance of the fragmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bose S N. Plancks gesetz und lichtquantenhypothese. Z Phys, 1924, 26: 178–181

    Article  ADS  MATH  Google Scholar 

  2. Einstein A. Quantum theory of monatomic ideal gases. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Phys Math Klasse, 1924. 261–267

  3. Penrose O, Onsager L. Bose-Einstein condensation and liquid Helium. Phys Rev, 1956, 104: 576–584

    Article  ADS  MATH  Google Scholar 

  4. Yang C N. Concept of off-diagonal long-range order and the quantum phases of liquid he and of superconductors. Rev Mod Phys, 1962, 34: 694–704

    Article  ADS  Google Scholar 

  5. Nozières P, Saint James D. Particle vs. pair condensation in attractive Bose liquids. J Phys (Paris), 1982, 43: 1133–1148

    Google Scholar 

  6. Nozières P, In: Bose-Einstein Condensation in Dilute Gases. Edited by Griffin A, Snoke D W, Stringari S. Cambridge: Cambridge University Press, 1995

    Google Scholar 

  7. Mueller E J, Ho T L, Ueda M, et al. Fragmentation of Bose-Einstein condensates. Phys Rev A, 2006, 74: 033612

    Article  ADS  Google Scholar 

  8. Spekkens RW, Sipe J E. Spatial fragmentation of a Bose-Einstein condensate in a double-well potential. Phys Rev A, 1999, 59: 3868–3877

    Article  ADS  Google Scholar 

  9. Jaksch D, Bruder C, Cirac J I, et al. Cold Bosonic atoms in optical lattices. Phys Rev Lett, 1998, 81: 3108–3111

    Article  ADS  Google Scholar 

  10. Greiner M, Mandel O, Esslinger T, et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature, 2002, 415: 39–44

    Article  ADS  Google Scholar 

  11. Ho T L, Yip S K. Fragmented and single condensate ground states of Spin-1 bose gas. Phys Rev Lett, 2000, 84: 4031–4034

    Article  ADS  Google Scholar 

  12. Wilkin N K, Gunn J M F, Smith R A. Do attractive Bosons condense? Phys Rev Lett, 1998, 80: 2265–2268

    Article  ADS  Google Scholar 

  13. Bader P, Fischer U R. Fragmented many-body ground states for scalar Bosons in a single trap. Phys Rev Lett, 2009, 103: 060402

    Article  ADS  Google Scholar 

  14. Fischer U R, Bader P. Interacting trapped bosons yield fragmented condensate states in low dimensions. Phys Rev A, 2010, 82: 013607

    Article  ADS  Google Scholar 

  15. Cederbaum L S, Streltsov A I, Alon O E. Fragmented metastable states exist in an attractive Bose-Einstein condensate for atom numbers well above the critical number of the gross-pitaevskii theory. Phys Rev Lett, 2008, 100: 040402

    Article  ADS  Google Scholar 

  16. Streltsov A I, Alon O E, Cederbaum L S. General variational manybody theory with complete self-consistency for trapped bosonic systems. Phys Rev A, 2006, 73: 063626

    Article  ADS  Google Scholar 

  17. Alon O E, Streltsov A I, Cederbaum L S. Multiconfigurational timedependent Hartree method for bosons: Many-body dynamics of bosonic systems. Phys Rev A, 2008, 77: 033613

    Article  ADS  Google Scholar 

  18. Sakmann K, Streltsov A I, Alon O E, et al. Reduced density matrices and coherence of trapped interacting bosons. Phys Rev A, 2008, 78: 023615

    Article  ADS  Google Scholar 

  19. Streltsov A I, Alon O E, Cederbaum L S. Formation and dynamics of many-Boson fragmented states in one-dimensional attractive ultracold gases. Phys Rev Lett, 2008, 100: 130401

    Article  ADS  Google Scholar 

  20. Tsatsos M C, Streltsov A I, Alon O E, et al. Fragmented many-body states of definite angular momentum and stability of attractive threedimensional condensates. Phys Rev A, 2010, 82: 033613

    Article  ADS  Google Scholar 

  21. Giovanazzi S, Görlitz A, Pfau T. Tuning the dipolar interaction in quantum gases. Phys Rev Lett, 2002, 89: 130401

    Article  ADS  Google Scholar 

  22. Lu H Y, Lu H, Zhang J N, et al. Spatial density oscillations in trapped dipolar condensates. Phys Rev A, 2010, 82: 023622

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., Yi, S. Fragmented condensates of singly trapped dipolar Bose gases. Sci. China Phys. Mech. Astron. 55, 1535–1540 (2012). https://doi.org/10.1007/s11433-012-4862-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4862-y

Keywords

Navigation