Skip to main content
Log in

Numerical simulation of parachute Fluid-Structure Interaction in terminal descent

  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

A numerical simulation method for parachute Fluid-Structure Interaction (FSI) problem using Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm is proposed. This method could be used in both coupling computation of parachute FSI and flow field analysis. Both flat circular parachute and conical parachute are modeled and simulated by this new method. Flow field characteristics at various angles of attack are further simulated for the conical parachute model. Comparison with the space-time FSI technique shows that this method also provides similar and reasonable results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

α :

angle of attack

ρ :

air density

V :

velocity

V :

velocity at the inflow boundary

Γ ϕ :

generalized diffusion coefficient

S ϕ :

generalized source term

p :

static pressure

p :

pressure at the inflow boundary

µ:

molecular viscosity coefficient

µ e :

equivalent viscosity coefficient

C p :

pressure coefficient

ΔC p :

the pressure coefficient difference between the inner and outer canopy

K :

turbulent fluctuation kinetic energy

ɛ :

turbulent energy dissipation rate

Re :

Reynolds number

φ :

an angle between the canopy axis and the normal line of meridian

ψ :

apex angle of conical parachute

ω :

the half angle between two contiguous planes E

ν, β, θ :

angles (see Figure 5)

R f *:

dimensionless length of apex point of the cord line to the point on itself in unstretched gore state

σ * m , σ * u :

dimensionless stress in canopy fabric in the longitudinal and latitudinal direction

k :

shrink factor of canopy material

r*:

dimensionless bulge radius of the canopy

T*:

dimensionless force in cord line

x * f , z * f :

dimensionless x and z coordinates of cord line in cylindrical coordinates

E b , E f :

dimensionless elasticity modulus of canopy fabric and cord line

References

  1. Tezduyar T E. Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech, 1992, 28: 1–44

    Article  MathSciNet  MATH  Google Scholar 

  2. Tezduyar T E, Behr M, Liou J. A new strategy for finite element computations involving moving boundaries and interfaces—The Deforming-Spatial-Domain/Space-Time Procedure: I. The concept and the preliminary numerical tests. Computer Meth Appl Mech Eng, 1992, 94: 339–351

    Article  MathSciNet  MATH  Google Scholar 

  3. Tezduyar T E, Behr M, Mittal S, et al. A new strategy for finite element computations involving moving boundaries and interfaces—The Deforming-Spatial-Domain/Space-Time Procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Meth Appl Mech Eng, 1992, 94: 353–371

    Article  MathSciNet  MATH  Google Scholar 

  4. Mittal S, Tezduyar T E. A finite element study of incompressible flows past oscillating cylinders and airfoils. Int J Num Meth Fluids, 1992, 15: 1073–1118

    Article  Google Scholar 

  5. Mittal S, Tezduyar T E. Parallel finite element simulation of 3D incompressible flows-fluid-structure interactions. Int J Num Meth Fluids, 1995, 21: 933–953

    Article  MATH  Google Scholar 

  6. Stein K, Benney R, Kalro V, et al. Parallel computation of parachute fluid-structure interactions. Proceedings of the 14th AIAA Aerodynamic Decelerator Technology Conference, San Francisco, AIAA-97-1505, 1997

  7. Kalro V, Tezduyar T E. A parallel 3D computational method for fluid-structure interactions in parachute systems. Comput Meth Appl Mech Eng, 2000, 190: 321–332

    Article  MATH  Google Scholar 

  8. Stein K, Benney R, Kalro V, et al. Parachute fluid-structure interactions: 3D computation. Comput Meth Appl Mech Eng, 2000, 190: 373–386

    Article  MATH  Google Scholar 

  9. Tezduyar T E, Sathe S, Keedy R, et al. Space-Time Finite Element Techniques for computation of fluid-structure interactions. Comput Meth Appl Mech Eng, 2006, 195: 2002–2027

    Article  MathSciNet  MATH  Google Scholar 

  10. Tezduyar T E, Sathe S. Modeling of fluid-structure interactions with the Space-Time Finite Elements: solution techniques. Int J Num Meth Fluids, 2007, 54: 855–900

    Article  MathSciNet  MATH  Google Scholar 

  11. Tezduyar T E, Sathe S, Pausewang J, et al. Air-fabric interaction modeling with the stabilized space-time FSI technique. Proceedings of the Third Asian-Pacific Congress on Computational Mechanics, Kyoto, CD-ROM, 2007

  12. Tezduyar T E, Sathe S, Pausewang J, et al. Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods. Comput Mech, published online, 2008, doi: 10.1007/s00466-008-0261-7

  13. Tezduyar T E, Sathe S, Pausewang J, et al. Fluid-structure Interaction Modeling of Ringsail Parachutes. Comput Mech, published online, 2008, doi: 10.1007/s00466-008-0260-8

  14. Kim Y, Peskin C S. 3-D parachute simulation by the immersed boundary method. Comput Fluids, 2009, 38: 1080–1090

    Article  MathSciNet  MATH  Google Scholar 

  15. Karagiozis K, Kamakoti R, Cirak F, et al. A computational study of supersonic disk-gap-band parachutes using Large-Eddy Simulation coupled to a structural membrane. J Fluids Struct, 2011, 27: 175–192

    Article  Google Scholar 

  16. Patankar S V. Numerical Heat Transfer and Fluid Flow. New York: Hemisphere Publishing, McGraw-Hill, 1980

    MATH  Google Scholar 

  17. Zhu L C. An approximate approach to calculate drag, stress and deformation of inflated flat circular parachute (in Chinese). Land Technol, 1983, (1): 143–177, translated from the paper titled as Angenäherter Berechnung der Kräfte, Spannungen und Form des Ebenen Rundkappen-Fallschirms im gefüllten Zustand. DLR(FB) 71–98 Q (W) 0860

  18. Suryanaranyana G K, Prabhu, A. Effect of natural ventilation on the boundary separation and near-wake vortex shedding characteristics of a sphere. Exp Fluids, 2000, 29: 582–591

    Article  Google Scholar 

  19. Tobak M, Peake D J. Topology of three-dimensional separated flows. Ann Rev Fluid Mech, 1982, 14: 61–85

    Article  MathSciNet  Google Scholar 

  20. Sahu J, Cooper G, Benney R. 3-D parachute descent analysis using coupled CFD and structural codes. AIAA-95-1580, 1995

  21. Coutanceau M. On the role of high order separation on the onset of the secondary instability of the circular cylinder wake boundary. C R Acad Sci Serie II, 1988, 306: 1259–1263

    Google Scholar 

  22. Bouard R, Coutanceau M. The early stage of development of the wake behind an impulsively started cylinder for 40<Re<104. J Fluid Mech, 1980, 101: 583–607

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiHua Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Wan, K., Song, Q. et al. Numerical simulation of parachute Fluid-Structure Interaction in terminal descent. Sci. China Technol. Sci. 55, 3131–3141 (2012). https://doi.org/10.1007/s11431-012-4998-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-012-4998-z

Keywords

Navigation