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Eukaryotic mRNAs consist of two forms of transcripts: poly(A)+ and poly(A), based on the presence or absence of poly(A) 
tails at the 3 end. Poly(A)+ mRNAs are mainly protein coding mRNAs, whereas the functions of poly(A) mRNA are largely 
unknown. Previous studies have shown that a significant proportion of gene transcripts are poly(A)or bimorphic (containing 
both poly(A)+ and poly(A) transcripts). We compared the expression levels of poly(A) and poly(A)+ RNA mRNAs in nor-
mal and cancer cell lines. We also investigated the potential functions of these RNA transcripts using an integrative workflow 
to explore poly(A)+ and poly(A) transcriptome sequences between a normal human mammary gland cell line (HMEC) and a 
breast cancer cell line (MCF-7), as well as between a normal human lung cell line (NHLF) and a lung cancer cell line (A549). 
The data showed that normal and cancer cell lines differentially express these two forms of mRNA. Gene ontology (GO) an-
notation analyses hinted at the functions of these two groups of transcripts and grouped the differentially expressed genes ac-
cording to the form of their transcript. The data showed that cell cycle-, apoptosis-, and cell death-related functions corre-
sponded to most of the differentially expressed genes in these two forms of transcripts, which were also associated with the 
cancers. Furthermore, translational elongation and translation functions were also found for the poly(A) protein-coding genes 
in cancer cell lines. We demonstrate that poly(A) transcripts play an important role in cancer development. 
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Eukaryotic mRNAs include two main types: poly(A)+ and 
poly(A) transcripts, based on the presence or absence of a 
poly(A) tail at the 3 end [1,2]. However, some mRNAs can 
have both poly(A)+ and poly(A) forms, and are ‘bimor-

phic’ [3]. Polyadenylation at the 3 ends of mRNA tran-
scripts helps to stabilize mRNA and enable smooth nucleo-
cytoplasmic exportation and protein translation. Thus, the 
majority of known mRNA transcripts are poly(A)+ [4], 
whereas the poly(A) forms usually encode ribosomal 
RNAS [5], histone RNAs [6], tRNAs, and certain small [7] 
and long non-coding RNAs [8]. It was previously consid-
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ered that all functional transcripts were polyadenylated; thus, 
numerous studies have identified and investigated the func-
tions only of poly(A)+ transcripts. In contrast, studies on the 
poly(A) form of mRNA have been limited [9,10]. Howev-
er, since the development of better sequencing technologies, 
increasing numbers of poly(A) transcripts have been iden-
tified and reported [1,11]. For example, Cheng et al. [12] 
used tilling array analyses to show that 43.7% of all tran-
scribed gene sequences from 10 human chromosomes in 
eight cell lines are the poly(A) form. In addition, using 454 
sequencer technology, Wu et al. found that 64% of 13467 
distinct 3′ expressed sequence tags of cytoplasmic tran-
scripts from HeLa cells are poly(A) or bimorphic [1]. Fur-
thermore, 1911 (15.8%) and 2828 (25.8%) poly(A) and 
bimorphic transcripts in H9 human embryonic stem cells 
(hESCs) and HeLa cells, respectively, were identified using 
RNA-seq analyses [11]. Taken together, the poly(A) and 
bimorphic RNA transcripts comprise a significant propor-
tion of the human transcriptome. Nevertheless, only a few 
studies have investigated their functions, especially those 
differentially expressed in normal and cancerous cells. A 
recent study showed that ZNF, a member of the zinc finger 
factor protein family, has the poly(A) non-histone mRNAs 
znf460 and sesn3 [11]. Thus, there is a need to determine 
the levels of poly(A) or the bimorphic form of RNA ex-
pression and their functions in normal and cancerous cells 
to better understand the cell biology and mechanism of 
cancer development and progression.  

In this study, we identified the poly(A)+ and poly(A) 
transcripts in HMEC, MCF-7, NHLF, and A549 cell lines 
and explored their potential functions in human cancer. We 
analyzed eight RNA transcript datasets [13] representing 
poly(A)+ and poly(A) transcripts in the four human nor-
mal, adenocarcinoma breast and lung tissues cell lines.  

1  Materials and methods 

1.1  Data set 

We used eight strand-specific RNA-seq datasets, which 
contained transcriptomic information of ~200 bp poly(A)+ 
and poly(A) RNA fragments from the normal human 
mammary epithelial cell line HMEC, the breast cancer cell 
line MCF7, the normal human lung fibroblast cell line 
NHLF and the lung cancer cell line A549 (Table S1). The 
ENCODE/Cold Spring Harbor Laboratory using the Illu-
mina GAIIx platform generated the eight datasets, following 
the protocol described in http://www.ncbi.nlm.nih.gov/ 
pubmed/19620212. The datasets are part of the Encyclope-
dia of DNA Elements (ENCODE) Project [13] and contain 
808.7 million 76 bp paired-end sequences in terms of total 
reads and approximately 101.1 million reads per sample. All 
of the long RNA-seq data used in this study can be down-
loaded from the NCBI Gene Expression Omnibus (http:// 

www.ncbi.nlm.nih.gov/geo) under the accession number 
GSE30567.  

The human reference genome, Hg19, annotation re-
sources, including the RefSeq data, the UCSC data, 
GENCODE data, Ensembl data, and the pseudogene anno-
tation were downloaded from UCSC in September 2011 
(http://genome.ucsc.edu/) (Table S2). 

1.2  Identification of poly(A)+, poly(A), and bimor-
phic transcripts  

To comprehensively construct transcripts from RNA-seq 
data and to identify the poly(A)+, poly(A), and bimorphic 
transcripts, we developed a computational workflow com-
prising three steps (Figure 1).  

1.2.1  Integration of transcripts 

We constructed the transcriptome from each sample and 
integrated these transcripts with annotated transcripts as a 
unified transcript set (Figure 1A).  

(1) RNA-seq read mapping.  All the reads of the RNA-  
seq data were aligned to the human genome (Hg19) using 
the fast splice junction mapper, TopHat version V1.4.1 [14]. 
Briefly, it aligned the reads to the human genome using the 
ultra high-throughput short read aligner Bowtie [15] and 
then analyzed the mapping results to identify splice junc-
tions between exons based on canonical and non-canonical 
splice sites flanking the aligned reads. In this analysis work-
flow, two iterations of TopHat alignments were used to ac-
quire the splice site information derived from these eight 
samples of four human cell lines in the ENCODE project 
[13] (GEO accession No. GSE30567). Before analyzing 
these eight samples from the four cell lines, we constructed 
a splice site pool from the eight samples using TopHat. We 
then re-aligned each sample using the pool (using 
‘raw-juncs’ and ‘no-novel-juncs’ parameters). 

(2) RNA-seq transcriptome assembly.  To construct the 
transcriptome of each sample, Cufflinks [16] was used to 
assemble the mapped reads aligned to the genome. Briefly, 
Cufflinks assembled the transcripts by accepting the aligned 
RNA-seq reads and assembling the alignments into a par-
simonious set of transcripts. It was based on a probabilistic 
model that provided a maximum likelihood explanation of 
the expression data at a given locus [17].  

(3) Integration of the transcripts.  We then integrated con-
structed transcripts using Cuffcompare [16] with all annota-
tion resources, including RefSeq, the UCSC annotation for 
humans, and the Ensembl database and lncRNA transcripts 
from GENCODE Version 11. The integration helped us to 
determine a unique set of isoforms for each transcript locus 
and reduced the redundant calculation of FPKM (fragments 
per kilobase of transcript per million mapped reads).  

1.2.2  Filtering of background transcripts 

This module calculated expression values (i.e., FPKM) for  
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Figure 1  Computational workflow for the identification of different forms of gene transcripts in cells. A, Graphical representation of the generation and 
integration of transcripts via bioinformatics analyses. Transcripts were reconstructed from Cufflinks, and all coding genes and non-coding RNAs were de-
termined from RefSeq, UCSC, Ensembl and GENCODE to integrate into ‘all transcripts’ using Cuffcompare. B, Screening of the expressed transcripts from 
the integrated transcripts. Lower coverage with one read and single exon transcripts were filtered as ‘background transcripts’; transcripts on the left are con-
sidered ‘expressed transcripts’ in these samples. C, Screening of different forms of transcripts. V+ means FPKM value in poly(A)+ sample, V means 
FPKM value in poly(A) sample. 

the integrated transcript set in a given sample and filtered 
out low expression transcripts (Figure 1B).  

(1) Calculation of transcript expression levels.  We cal-
culated expression values (FPKM) for the integrated tran-
script set in each sample using the same computational pro-
cess, because Cufflinks [16] uses a random algorithm in the 
program and offers different FPKM values for different 
transcript sets and computational processes.  

(2) Filtering of low expression transcripts.  One chal-
lenge of this workflow was how to distinguish lncRNAs 
expressed at a low level from unreliable transcripts assem-

bled from RNA-seq data [18]. Transcripts with a maximal 
coverage in all eight samples below 1 were eliminated. The 
outputs from this step were termed ‘expressed transcripts’ 
(Figure 1B). 

1.2.3  Identification of poly(A)+, poly(A), and bimorphic 
transcripts 

This module classified all expressed transcripts into three 
subgroups, i.e., poly(A)+, poly(A), or bimorphic [11], ac-
cording to their relative abundance using FPKM values for 
each gene in the poly(A)+ and poly(A) samples from the 
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given cell line (Figure 1C). 
We then recalculated the merged transcripts’ relative 

abundance (i.e., FPKM), their differential expression in two 
corresponding samples, and Poly(A)+ and Poly(A) levels 
in the same cell line using Cuffdiff [16]. Poly(A)+ predom-
inant transcripts (‘poly(A)+ transcripts’ for short) were de-
fined as those expressed transcripts with P<0.05 and at least 
two-fold greater expression enrichment from the poly(A)+ 
library compared with the poly(A) library. In contrast, 
poly(A) predominant transcripts (‘poly(A) transcripts’) 
were defined as those expressed transcripts with P<0.05 and 
at least two-fold greater enrichment from the poly(A) li-
brary compared with the poly(A)+ library. Bimorphic pre-
dominant transcripts (‘bimorphic transcripts’) were defined 
as those expressed transcripts with P>0.05 or less than 
two-fold relative expression between the poly(A)+ and 
poly(A) libraries.  

2  Results 

2.1  Overview of transcriptome assembly  

The RNA-seq data contained 808.7 million reads, and ap-
proximately 80% were mapped to the human genome. Us-
ing Cufflinks [16], 929754 transcripts were ab initio con-
structed, 82.1% of which (762941) were from poly(A) sam-
ples and 17.9% (166813) from poly(A)+ samples. Among the 
poly(A) transcripts, 78.3% (597441) were from cancer cell 
lines (i.e., MCF7 and A549). Most of the assembled tran-
scripts (64.2%) were from poly(A) samples of cancer cell 
lines (Table 1). Therefore, based on the numbers of exons, 
we divided the transcripts into two types: multiple exon 
transcripts and single exon transcripts. For the assembled 
transcripts with multiple exons, 51.9% (96072) of them 
were assembled from poly(A)+ samples and 48.1% (89192) 
were from poly(A) samples. Hence, poly(A)+ samples 
represented more multiple exon transcripts (an average of 
60.6%), especially for the two normal cell lines (an average 
of 73.0%), compared with that of poly(A) samples (aver-
age of 16.0%), particularly for samples from cancer cell 
lines (average of 9.2%). For the single exon transcripts, 

poly(A) samples represented significantly more one exon 
transcripts (an average of 84.1%), especially for the cancer 
cell line samples (an average of 90.8%), in comparison with 
poly(A)+ samples (an average of 39.4%). In addition, the 
average length of transcripts reconstructed from poly(A)+ 
samples was longer than that of transcripts reconstructed 
from poly(A) samples. The length distribution of tran-
scripts reconstructed from the eight samples of the four cell 
lines can be seen in Figure S1. 

Subsequently, we compared the multiple exon transcripts 
from each sample to the 33243 protein coding transcripts 
from the RefSeq data using Cuffcompare [16]. Approxi-
mately 66.6% of the transcripts overlapped with exons of 
known coding transcripts. The remaining transcripts be-
longed to known non-coding RNAs or novel non-coding 
RNAs. Thus, these sequencing data represented the expres-
sion of all genes in the cells well. 

2.2  Classification of poly(A)+, poly(A) and bimorphic 
predominant transcripts in four cell lines  

We designed a pipeline (Figure 1) to classify the transcripts 
into poly(A)+, poly(A) and bimorphic transcripts, accord-
ing to their different expression patterns in poly(A)+ and 
poly(A) samples from cancer cells. For the coding tran-
scripts filtered from all transcripts that were integrated using 
annotation of RefSeq, UCSC, Ensembl and GENCODE 
Version 11 databases and including all protein coding tran-
scripts and long non-coding transcripts, most (44.7%) were 
bimorphic transcripts, i.e., 37.5% were poly(A)+ transcripts 
and 17.8% were poly(A) transcripts (Figure S2). However, 
taking RefSeq protein coding transcripts as an example, 
there were different compositions of poly(A)+, poly(A) 
and bimorphic transcripts, as shown in Figure 2. For exam-
ple, 15841 and 16777 expressed RefSeq protein coding 
transcripts were screened from four human breast samples 
and four lung cell lines samples, respectively (File S1). The 
protein coding poly(A)+ transcripts were the most abundant 
in HMEC, MCF7, and NHLF cell lines, with an average of 
52.3%; however, bimorphic transcripts accounted for the 
greatest ratio in the HMEC cell line with 44.7%. As ex- 

Table 1  Assembly data of the eight samples and comparison with the RefSeq annotated gene set  

Sample name Assembly results Multiple exons Multiple exon ratio (%) 
Exonic overlap with 

RefSeq 
Annotation ratio (%) 

of multiple exons 
HMEC-Poly(A)+ 29326 22274 76 16078 72.1 

HMEC-Poly(A) 82360 16727 20.3 10885 65.1 

MCF-7-Poly(A)+ 55854 24971 44.7 16716 66.9 

MCF-7-Poly(A) 379206 26829 7.1 16276 60.1 

NHLF-Poly(A)+ 35416 24455 69.1 17807 72.8 

NHLF-Poly(A) 83140 20886 25.1 12960 62.1 

A549-Poly(A)+ 46217 24372 52.7 16713 68.6 

A549-Poly(A) 218235 24750 11.3 16146 65.2 
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pected, poly(A) transcripts were the least abundant, with 
an average of 10% in these four cell lines, especially in the 
HMEC cell line, where they represented only 3.5% (Figure 
2).  

To further characterize the basic features of the different 
forms of protein coding transcripts, we compared the se-
quence characteristics and expression patterns among the 
three types of transcripts (Figure 2). The three types had the 
same average numbers of exons (11 exons) but different 
average lengths, i.e., 3.8 kb for poly(A)+ and 4.7 kb for 
poly(A), whereas bimorphic transcripts averaged 4.2 kb 
(Figure 3). In terms of their expression patterns, the expres-
sion levels of poly(A)+ protein-coding transcripts were 
greater than those of poly(A) and bimorphic transcripts in 
these four cell lines (Figure 3). 

2.3  Differentially expressed poly(A)+, poly(A), and 
bimorphic genes among these four cell lines  

To obtain differentially expressed transcripts (DETs), we 
first obtained the poly(A)+ and poly(A) transcripts from 
the interactions of tumor and normal samples (Figure S3, 
File S2). We then analyzed the differential expressions of 
these poly(A)+ or poly(A) transcripts between tumor and 
normal cell lines using Cuffdiff [16] (gene list in File S3). 
Using two-fold greater expression enrichment and a P-value 
of less than 0.05 as a cutoff point, we found that the number 
of upregulated and downregulated transcripts (tumor vs. 
normal) for poly(A)+ DETs of lung tissue were 1043 and 

1172, respectively. In poly(A)+ samples of breast cells, we 
found 1422 upregulated and 1188 downregulated poly(A)+ 
DETs (Table 2). Compared with poly(A)+ DETs, there were 
fewer poly(A) DETs in tumor vs. normal cell lines, i.e., 
there were 45 upregulated and 192 downregulated poly(A) 
DETs between lung cancer and normal lung cell lines. In 
addition, there were 24 upregulated and 37 downregulated 
poly(A) DETs observed in poly(A) samples of breast 
cancer vs. normal cells (Table 2). 

2.4  Potential functions of these differentially expressed 
poly(A)+ and poly(A) genes between tumor and normal 
cell lines 

We then used the David bioinformatics tool with gene on-
tology (GO) functional terms to predict the functions of 
these different coding transcript sets and presented the data 
using GO-FAT biological process terms. We found that the 
functions of upregulated poly(A) coding genes in lung 
cancer cells compared with normal cells were mainly asso-
ciated with gene translation elongation, protein amino acid 
dephosphorylation, translation, the enzyme-linked receptor 
protein signaling pathway, the transmembrane receptor pro-
tein serine/threonine kinase signaling pathway, and the 
BMP (bone morphogenetic protein) signaling pathway 
(P<0.01, Figure 4). For upregulated poly(A) coding genes 
in breast cancer cells compared with normal cells, the data 
showed the same functions, e.g., gene translation elongation 
and translation. Some of the downregulated poly(A)-coding  

 

 

Figure 2  Three different forms of the expressed RefSeq transcripts in the four cell lines. Expression levels of the expressed transcripts were analyzed in 
four cell lines using FPKM values. Three forms of gene transcripts for each cell line were obtained according to their relative FPKM values from each gene 
compared with the poly(A)+ vs. poly(A) samples of the same cell line.  
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Figure 3  Expression patterns of the three forms of protein-coding transcripts in four cell lines. The expression levels of the three forms of the expressed 
RefSeq transcripts were compared in four cell lines using log2FPKM values (Figure 2). 

Table 2  Differentially expressed poly(A)+ and poly(A) transcripts 
between normal and cancer cell linesa) 

 Lung Breast 

Poly(A)+ (↑) 1043 1422 

Poly(A)+ (↓) 1172 1188 

Poly(A) (↑) 45 24 

Poly(A) (↓) 192 37 

a) ↑, upregulated transcripts of tumor vs. normal cells; ↓, downreg-
ulated transcripts of tumor vs. normal cells. Details of these transcripts are 
listed in File S3 in Supporting Information.  

 
genes in cancer cells appear to have functions related to cell 
death and the cell cycle in these two pairs of cell lines (Fig-
ure S4).  

Furthermore, the functions of the poly(A)+ coding genes 
were mostly associated with the cell cycle, apoptosis, and cell 
death in cancer cell lines. These genes are reported to be 
highly expressed in cancer cells [19] (Figures S5 and S6). 

In addition, the poly(A) state of the expressed transcripts 
was altered between cancer and normal cells. For example, 
poly(A)+ transcripts were converted into poly(A) during  

carcinogenesis. The number of transcripts converted was 
approximately 460 and 476 in lung and breast cancer cells, 
respectively (gene list in File S4). Similarly, some poly(A) 
transcripts in normal cells displayed a poly(A)+ characteris-
tic in cancer cells. We found 153 and 223 genes with such 
an alteration in lung and breast cancer cells, respectively 
(gene list in File S4). Furthermore, functional enrichment 
analysis demonstrated that the functions of genes with mu-
tual conversion of poly(A)+ to poly(A) in normal and 
cancer cells were mainly associated with cell cycle progres-
sion and apoptosis (Figure 5), whereas the functions of 
genes with mutual conversion of poly(A) to poly(A)+ were 
negative regulators of molecular function and RNA locali-
zation in normal and cancer cells (Figure S7).  

3  Discussion 

We developed an integrative method to reconstruct tran-
scripts from eight lung and breast cell lines samples. Our  
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Figure 4  GO analysis of the upregulated poly(A) coding genes between normal lung and lung cancer cell lines (left) and between normal breast and 
breast cancer cell lines (right). 

 

Figure 5  GO analysis of mutual conversion genes. Poly(A)+ in normal and poly(A) forms of mRNA between normal and cancer cell lines. The lung cell 
line data are shown on the left, while the breast cell line data are shown on the right.  

study provided several important observations: (i) the tran-
scripts of some annotated coding genes were in the 
poly(A) form; (ii) according to their relative abundance 
(FPKM values), all expressed transcripts could be divided 
into three subgroups: poly(A)+, poly(A) and bimorphic; 
(iii) half (50.0% on average in these cell lines) of these ex-
pressed protein-coding transcripts were poly(A)+, while the 
other half were bimorphic (40%) or poly(A) (10%); and 
(iv) GO enrichment analyses showed that poly(A)+ and 
some poly(A) DETs were associated with cell cycle pro-
gression, DNA damage, and apoptosis-related genes, 
whereas poly(A) DETs were also associated with gene 
translational elongation and translation functional categories, 

suggesting that poly(A)+ and poly(A) transcripts play dif-
ferent roles in tumor development and progression. Thus, 
we show that poly(A) transcripts may play an important 
role in cancer progression.  

To the best of our knowledge, this is the first study to 
report differential expression and functions of poly(A)+ and 
poly(A) genes between normal and tumor cell lines using 
high-throughput sequencing data. We found that the pro-
tein-coding genes with upregulated poly(A)+ transcripts 
were associated with DNA damage and the cell cycle in 
lung cancer (e.g., genes that respond to DNA damage stimuli, 
DNA repair, cell mitosis, and the M-phase of cell cycle). 
These genes are upregulated in cancer and many other dis-
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eases [20,21], and the stimuli of gene upregulation causing 
DNA damage are usually from the environment, including 
ultraviolet or ionizing radiation, and various chemicals, or 
from inside cells [22]. Moreover, the regulation of cell cycle 
progression is altered during cancer development and pro-
gression [23,24]. However, for poly(A) DETs, the func-
tions of these genes are associated with protein translation 
elongation; for example, ribosomal protein SA (RPSA) 
causes protein translation elongation and is upregulated in 
lung cancer [25,26]. EIF4EBP1, a repressor of translation 
with a short poly(A) tail, is overexpressed in patients with 
lung cancer [27,28]. EIF4EBP1 directly interacts with eu-
karyotic translation initiation factor 4E (eIF4E) to inhibit 
protein translation complex assembly and repress translation. 
EIF4EBP1 is activated through phosphorylation by various 
signals (such as UV irradiation and insulin signaling), re-
sulting in its dissociation from eIF4E and activation of 
mRNA translation [29]. EIF4EBP1 is also a key effector for 
the oncogenic activation of the AKT and ERK signaling 
pathways, which have integrated functions in different can-
cers [30].  

The downregulated poly(A) coding genes (Figure S3) 
are associated with cell death and cell cycle regulation, 
which are associated with tumorigenesis and tumor progres-
sion [19,31]. In addition, these mutual conversion genes 
mainly function to regulate the cell cycle, cell death, and 
apoptosis. Alterations of these genes frequently occur dur-
ing tumorigenesis and cancer progression [19,32]. Poly(A) 
status can influence mRNA stability and translation effi-
ciency; therefore, it is plausible that the transformation be-
tween poly(A)+ and poly(A) may change the expression of 
a transcript and thus play an important role in cancer de-
velopment and progression. The transcripts affected are 
involved in cell cycle regulation; therefore, it is conceivable 
that cell proliferation would be further influenced. Ulti-
mately, tumorigenesis is triggered because of inappropriate 
cell proliferation [33]. Similarly, inappropriate apoptosis 
may cause tumorigenesis because apoptosis can serve as a 
natural barrier to cancer development [19]. Collectively, 
poly(A) genes or an alterable poly(A) tails may influence 
the emergence and development of a tumor. Taken together, 
these results suggest that poly(A) genes play an important 
role in cancer.  

In addition, increasing numbers of non-coding RNAs 
have been identified that play a role in human cancers 
[34–36]. In the current study, we observed that certain 
non-coding RNAs were able to regulate gene expression. 
These non-coding RNAs were also present in three forms, 
i.e., poly(A)+, poly(A) and bimorphic, and may play a role 
in cancer development. Indeed, previous studies have 
shown that p15AS (an antisense lncRNA) could silence 
expression of the p15 tumor suppressor gene in human leu-
kemia [37], while lincRNA-p21, a repressor of p53-        
dependent transcriptional responses [38], and HOX anti-
sense intergenic RNA (HOTAIR) play an active role in 

modulating the cancer epigenome and mediating cell trans-
formation [39]. Furthermore, PCAT-1, a transcriptional 
repressor, has been implicated in a subset of prostate cancer 
patients [40]. Thus, the different forms of non-coding RNAs 
participate and influence tumorigenesis and tumor progres-
sion. Use of the coding-non-coding co-expression network to 
annotate the functions of the different forms of non-coding 
RNAs represents a novel tool for future research [41–44].  

However, the methodology used in our current study 
presented some challenges. For example, we mainly used 
gene annotation after transcript alignment and assembly in 
the integrating transcripts step using Cuffcompare. To in-
crease the precision of splice junction detection and tran-
script assembly, the gene annotation file for TopHat and 
Cufflinks is highly recommended by others. In our study, 
we performed de novo assembly without use of TopHat and 
Cufflink databases. Moreover, we did not use any of the an-
notation files from RefSeq, UCSC, Ensembl, or GENCODE 
as the reference annotation method for Cuffcompare to as-
sist the process of transcript comparison and merging from 
different samples. Nonetheless, we did use Cuffcompare to 
remove the duplicate transcripts that overlapped in different 
databases. The principle is that Cuffcompare examines the 
structure of each transcript and matches transcripts that 
agree with the coordination and orders of all of their introns 
as well as the strand. Matched transcripts were allowed to 
differ on the length of the first and last exons, since these 
lengths will naturally vary from database to database of 
different sources. Thus, this approach could be useful to 
produce informative data. Another challenge is that it is 
impossible to assess the accuracy and sensitivity of the 
method because of the lack of “golden sets” for the three 
forms of genes to date. In a previous study [23], different 
proportions of the three forms of genes for different cell 
lines were observed, i.e., the form of a gene varies under 
different conditions. These results indicate that the analysis 
of accuracy and sensitivity is not practical for this kind of 
study. Overall, our current data demonstrated proof-of-      
principle; however, more studies are needed to investigate 
the functions of these three types of mRNAs in cancer and 
other human diseases.  
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Supporting Information 

Figure S1  The length distribution of transcripts reconstructed from eight samples of these four cell lines. 

Figure S2  The three forms of the expressed transcripts in these four cell lines. 

Figure S3  Intersection of protein-coding transcripts between normal and cancer cell lines for poly(A)+ (top), poly(A) (middle), and bimorphic (bottom) 
transcripts. HMEC, normal lung cell line; MCF-7, breast cancer cell line; NHLF, normal breast cell line; A549, lung cancer cell line. 

Figure S4  GO analysis of the down-regulated poly(A) coding genes between normal and lung cancer cell lines (left) as well as between normal and breast 
cancer cell lines (right). 

Figure S5  GO analysis of the up-regulated poly(A)+ coding genes between normal and lung cancer cell lines (left) as well as between normal and breast 
cancer cell lines (right). 

Figure S6  GO analysis of the down-regulated poly(A)+ coding genes between normal and lung cancer cell lines (left) as well as between normal and breast 
cancer cell lines (right). 

Figure S7  GO analysis of the mutually converted genes as poly(A) in normal and poly(A)+ in cancer of different forms between normal and cancer cell 
lines. Left, lung; right, breast. The “mutual conversion genes” indicate that they were originally poly(A) genes in the normal cell line, whereas poly(A)+ 
genes were in the tumor cell line. After conversion, the opposite was true. 

Table S1  Human paired-end RNA-seq data sets from ENCODE Cold Spring Harbor Labs 

Table S2  Human reference genome sequences of hg19 from annotation resources 

File S1  three_form_of_refseq_genes.xlsx 

File S2  three_forms_intersection_between_normal_cancer.xlsx 

File S3  lung_mammary.three_forms.xlsx 

File S4  transformed_genes.xlsx 

The supporting information is available online at life.scichina.com and www.springerlink.com. The supporting materials 
are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains en-
tirely with the authors. 
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