Skip to main content
Log in

Shrinking target problems for beta-dynamical system

  • Articles
  • Published:
Science China Mathematics Aims and scope Submit manuscript

Abstract

For any β > 1, let ([0, 1], T β ) be the beta dynamical system. For a positive function ψ: ℕ → ℝ+ and a real number x 0 ∈ [0, 1], we define \(\mathbb{D}\left( {T_\beta ,\psi ,x_0 } \right)\) the set of ψ-well approximable points by x 0 as

$$\left\{ {x \in \left[ {0,1} \right]:\left| {T_\beta ^n x - x_0 } \right| < \psi \left( n \right) for infinitely many n \in \mathbb{N}} \right\}.$$

In this note, by proving a structure lemma that any ball B(x, r) contains a regular cylinder of comparable length with r, we determine the Hausdorff dimension of the set \(\mathbb{D}\left( {T_\beta ,\psi ,x_0 } \right)\) completely for any β> 1 and any positive function ψ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barreira L, Saussol B. Hausdorff dimension of measures via Poincaré recurrence. Commun Math Phys, 2001, 219: 443–463

    Article  MathSciNet  MATH  Google Scholar 

  2. Besicovitch A S. Sets of fractional dimension (IV): On rational approximation to real numbers. J London Math Soc, 1934, 9: 126–131

    Article  MathSciNet  Google Scholar 

  3. Boshernitzan M. Quantitative recurrence results. Invent Math, 1993, 113: 617–631

    Article  MathSciNet  MATH  Google Scholar 

  4. Bugeaud Y. A note on inhomogeneous Diophantine approximation. Glasgow Math J, 2003, 45: 105–110

    Article  MathSciNet  MATH  Google Scholar 

  5. Chernov N, Kleinbock D. Dynamical Borel-Cantelli lemmma for Gibbs measures. Israel J Math, 2001, 122: 1–27

    Article  MathSciNet  MATH  Google Scholar 

  6. Falconer K J. Fractal Geometry, Mathematical Foundations and Application. New York: Wiley, 1990

    Google Scholar 

  7. Fan A H, Wang B W. On the lengths of basic intervals in beta expansions. Nonlinearity, 2012, 25: 1329–1343

    Article  MathSciNet  MATH  Google Scholar 

  8. Färm D, Persson T, Schmeling J. Dimenion of countable intersections of some sets arising in expansions in non-integer bases. Fundam Math, 2010, 209: 157–176

    Article  MATH  Google Scholar 

  9. Fayad B. Mixing in the absence of the shrinking target property. Bull London Math Soc, 2006, 38: 829–838

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernández J L, Melián M V, Pestana D. Quantitative recurrence properties of expanding maps. ArXiv:math/0703222v1, 2007

  11. Galatolo S. Dimension via waiting time and recurrence. Math Res Lett, 2005, 12: 377–386

    MathSciNet  MATH  Google Scholar 

  12. Hill R, Velani S. The ergodic theory of shrinking targets. Invent Math, 1995, 119: 175–198

    Article  MathSciNet  MATH  Google Scholar 

  13. Hill R, Velani S. Metric diophantine approximation in Julia sets of expanding rational maps. Inst Hautes Etudes Sci Publ Math, 1997, 85: 193–216

    Article  MathSciNet  MATH  Google Scholar 

  14. Hill R, Velani S. The shrinking target problems for matrix transformations of tori. J London Math Soc, 1999, 60: 381–398

    Article  MathSciNet  MATH  Google Scholar 

  15. Jarník V. Diophantische approximationen und Hausdorffsches mass. Mat Sb, 1929, 36: 371–382

    MATH  Google Scholar 

  16. Kim D H. The shrinking target property of irrational rotations. Nonlinearity, 2007, 20: 1637–1643

    Article  MathSciNet  MATH  Google Scholar 

  17. Parry W. On the β-expansions of real numbers. Acta Math Acad Sci Hunger, 1960, 11: 401–416

    Article  MathSciNet  MATH  Google Scholar 

  18. Persson T, Schmeling J. Dyadic Diophantine approximation and Katok’s horseshoe approximation. Acta Arith, 2008, 132: 205–230

    Article  MathSciNet  MATH  Google Scholar 

  19. Pfister C E, Sullivan W G. Large deviations estimates for dynamical systems without the specification property. Applications to the β-shifts. Nonlinearity, 2005, 18: 237–261

    MathSciNet  MATH  Google Scholar 

  20. Philipp W. Some metrical theorems in number theory. Pacific J Math, 1967, 20: 109–127

    Article  MathSciNet  MATH  Google Scholar 

  21. Rényi A. Representations for real numbers and their ergodic properties. Acta Math Acad Sci Hunger, 1957, 8: 477–493

    Article  MATH  Google Scholar 

  22. Schmeling J. Symbolic dynamics for β-shfits and self-normal numbers. Ergod Theory Dyn Syst, 1997, 17: 675–694

    Article  MathSciNet  MATH  Google Scholar 

  23. Schmeling J, Troubetzkoy S. Inhomogeneous Diophantine approximation and angular recurrence properties of the billiard flow in certain polygons. Math Sb, 2003, 194: 295–309

    Article  MathSciNet  MATH  Google Scholar 

  24. Thompson D. Irregular sets, the β-transformation and the almost specification property. ArXiv:0905.0739v1, 2009

  25. Tseng J. On circle rotations and the shrinking target properties. Discrete Contin Dyn Syst, 2008, 20: 1111–1122

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BaoWei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, L., Wang, B. Shrinking target problems for beta-dynamical system. Sci. China Math. 56, 91–104 (2013). https://doi.org/10.1007/s11425-012-4478-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11425-012-4478-8

Keywords

MSC(2010)

Navigation